five

OpenSTL|时空预测学习数据集|基准数据集数据集

收藏
arXiv2023-10-18 更新2024-06-21 收录
时空预测学习
基准数据集
下载链接:
https://github.com/chengtan9907/OpenSTL
下载链接
链接失效反馈
资源简介:
OpenSTL数据集是一个全面的时空预测学习基准,由浙江大学和西湖大学联合开发。该数据集包含14种代表性算法和24种模型,涵盖了从合成移动物体轨迹预测到实际人类动作、驾驶场景、交通流量和天气预报等多个领域。数据集支持的任务范围广泛,从微观到宏观尺度,从合成到真实世界数据。OpenSTL数据集通过提供一个模块化和可扩展的框架,实现了对各种最先进方法的标准化评估,旨在推动时空预测学习领域的发展。
提供机构:
浙江大学
创建时间:
2023-06-20
AI搜集汇总
数据集介绍
main_image_url
构建方式
OpenSTL数据集通过整合多种时空预测学习方法,构建了一个全面的基准测试平台。该数据集涵盖了从合成运动物体轨迹到真实世界的人类动作、驾驶场景、交通流量和天气预报等多个领域。数据集的构建采用了模块化和可扩展的框架,实现了对各种最先进方法的标准化评估。具体来说,OpenSTL将流行的方法分为基于循环和非循环两类,并提供了对这些方法的详细分析,以揭示模型架构和数据集属性对时空预测学习性能的影响。
特点
OpenSTL数据集的主要特点在于其广泛的应用场景和多样化的数据类型。它不仅包括合成数据,还涵盖了真实世界的视频数据,如人类动作捕捉、驾驶场景、交通流量和天气预报。此外,数据集提供了对模型性能的全面评估,包括误差度量、相似性度量、感知度量和计算复杂度度量。这些特点使得OpenSTL成为一个强大的工具,用于研究和比较不同的时空预测学习方法。
使用方法
OpenSTL数据集的使用方法简单直观。用户可以通过提供的代码库和模型,轻松地进行模型训练、评估和测试。数据集支持多种任务,包括合成运动物体轨迹预测、人类动作捕捉、驾驶场景预测、交通流量预测和天气预报。用户可以根据具体需求选择合适的任务和数据集,利用OpenSTL提供的标准化框架进行实验。此外,数据集还提供了详细的文档和示例,帮助用户快速上手并进行深入研究。
背景与挑战
背景概述
OpenSTL 是一个综合性的时空预测学习基准,由浙江大学、西湖大学和西安电子科技大学的研究人员共同开发。该数据集旨在解决时空预测学习中的多样性设置、复杂实现和难以复现的问题。OpenSTL 通过将流行的方法分类为基于循环和非循环模型,提供了一个模块化和可扩展的框架,实现了各种最先进的方法。该数据集涵盖了从合成移动物体轨迹到天气预报等多个领域的数据集,并对模型架构和数据集属性对时空预测学习性能的影响进行了详细分析。OpenSTL 的提出对于推动时空预测学习领域的发展和促进不同方法之间的有意义比较具有重要意义。
当前挑战
OpenSTL 数据集面临的挑战主要包括两个方面:一是解决时空预测学习领域的系统性理解不足问题,这源于多样化的设置、复杂的实现和难以复现的特性;二是构建过程中遇到的挑战,如缺乏标准化导致的不公平比较和结论不明确。此外,OpenSTL 还需要回答一个长期存在的问题:是否必须使用循环神经网络架构来捕捉时间依赖性,或者非循环模型能否在不显式建模时间依赖性的情况下达到相当的性能。这些挑战需要在数据集的设计和实验评估中得到充分考虑和解决。
常用场景
经典使用场景
OpenSTL数据集在时空预测学习领域中被广泛应用于各种经典场景,包括合成运动物体轨迹预测、人类动作预测、驾驶场景预测、交通流量预测和天气预报。这些场景涵盖了从微观到宏观的不同尺度,为研究人员提供了一个全面的基准来评估和比较不同的时空预测模型。
衍生相关工作
基于OpenSTL数据集,研究者们开发了多种相关的经典工作,如ConvLSTM、PredRNN、SimVP等。这些工作不仅在学术界引起了广泛关注,还在实际应用中得到了验证。此外,OpenSTL还激发了对MetaFormers架构的扩展研究,进一步推动了时空预测技术的发展。
数据集最近研究
最新研究方向
在时空预测学习领域,OpenSTL数据集的最新研究方向主要集中在探索和验证非循环模型(recurrent-free models)在捕捉时空依赖性方面的潜力。研究通过构建一个综合基准,对比了基于循环的模型和非循环模型在多种任务中的表现,发现非循环模型在效率和性能上能够达到与循环模型相当的水平,甚至在某些情况下表现更优。这一发现挑战了传统上认为必须使用循环神经网络架构来捕捉时间依赖性的观点,为时空预测学习提供了新的研究路径。
相关研究论文
  • 1
    OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning浙江大学 · 2023年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2020)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 70 年(1951~2020 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 70 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。2021 年至 2024 年的 CMFD 数据正在制作中,计划于 2025 年上半年发布,从而使 CMFD 2.0 延伸至 2024 年底。

国家青藏高原科学数据中心 收录

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

ICESat-2 Data

ICESat-2 Data 是由美国国家航空航天局(NASA)发布的卫星数据集,主要用于全球冰层和陆地高程的测量。该数据集包括高精度激光测高数据,用于研究冰川、海冰、植被和地形变化。

icesat-2.gsfc.nasa.gov 收录