SIDD+|图像去噪数据集|图像处理数据集
收藏
China Health and Nutrition Survey (CHNS)
China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。
www.cpc.unc.edu 收录
URPC系列数据集, S-URPC2019, UDD
URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。
github 收录
GlobalBuildingAtlas
GlobalBuildingAtlas是一个公开的全球建筑数据集,提供了全球范围内的建筑多边形、高度和LoD1 3D模型。该数据集是第一个提供高质量的、一致的、完整的建筑数据,以2D和3D形式在单个建筑层面上进行全球覆盖的公开数据集。数据集包括2.75亿座建筑,比目前最全面的数据库多出超过10亿座建筑。GBA.Height提供了迄今为止最详细和最准确的全球3D建筑高度图,实现了3×3米的空间分辨率,比以前的全球产品(90米)精细30倍,能够在本地和全球范围内对建筑体积进行高分辨率和可靠的分析。GBA.LoD1代表了第一个完整的全球LoD1建筑模型,包括2.68亿个建筑实例,具有预测的高度,即高度完整性超过97%,在不同大陆上实现了从1.5米到8.9米的RMSEs。GlobalBuildingAtlas以其高度精度、全面的全球覆盖和丰富的空间细节,为全球建筑现状提供了新的见解,开辟了前所未有的地理空间分析可能性,例如更好地说明人们居住在哪里,以及更全面地监测联合国第11个可持续发展目标的进展。
arXiv 收录
中国行政区划数据
本项目为中国行政区划数据,包括省级、地级、县级、乡级和村级五级行政区划数据。数据来源于国家统计局,存储格式为sqlite3 db文件,支持直接使用数据库连接工具打开。
github 收录
中国劳动力动态调查
“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。
中国学术调查数据资料库 收录