five

Owl-Bench|信息技术运维数据集|评估基准数据集

收藏
github2023-09-01 更新2025-02-08 收录
信息技术运维
评估基准
下载链接:
https://github.com/HC-Guo/Owl
下载链接
链接失效反馈
资源简介:
Owl-Bench数据集是一个为信息技术运维场景量身定制的双语评估基准。它包含了317个问答对,以及1000道多项选择题。这些任务涵盖了众多真实世界工业场景,涉及九个不同的子领域:信息安全、应用、系统架构、软件架构、中间件、网络、操作系统、基础设施和数据库。

The Owl-Bench dataset is a bilingual evaluation benchmark meticulously tailored for information technology operations and maintenance scenarios. It encompasses 317 question-answer pairs and 1000 multiple-choice questions. These tasks span a multitude of real-world industrial scenarios, covering nine distinct subfields: information security, applications, system architecture, software architecture, middleware, networking, operating systems, infrastructure, and databases.
提供机构:
北京航空航天大学
创建时间:
2023-09-01
原始信息汇总

OWL数据集概述

数据集简介

  • 名称:OWL (A Large Language Model for IT Operations)
  • 领域:IT运维领域(AIOps)
  • 主要功能:处理IT运维相关任务(故障诊断、日志分析等)
  • 项目性质:开源项目

核心内容

  1. 模型特点

    • 基于构建的OWL-Instruct数据集训练
    • 提出HMCE方法(Homogeneous Markov Context Extension)解决输入长度限制问题
    • 采用混合适配器策略(mixture-of-adapter)提高跨域/跨任务的参数效率调优
  2. 评估基准

  3. 性能表现

    • 在IT任务上表现优于现有模型
    • 论文已被ICLR 2024接收

数据构建流程

  1. OWL-Instruct构建四阶段
    • 数据生成
    • GPT4筛选
    • 人工验证
    • 监督微调
  2. 提供数据
    • 双语指令数据(ops001

使用指南

引用信息

bibtex @inproceedings{ guo2024owl, title={{OWL}: A Large Language Model for {IT} Operations}, author={Hongcheng Guo and Jian Yang and Jiaheng Liu and Liqun Yang and Linzheng Chai and Jiaqi Bai and Junran Peng and Xiaorong Hu and Chao Chen and Dongfeng Zhang and xu Shi and Tieqiao Zheng and liangfan zheng and Bo Zhang and Ke Xu and Zhoujun Li}, booktitle={The Twelfth International Conference on Learning Representations}, year={2024}, url={https://openreview.net/forum?id=SZOQ9RKYJu} }

联系方式

  • 邮箱:hongchengguo@buaa.edu.cn
AI搜集汇总
数据集介绍
main_image_url
构建方式
Owl-Bench数据集的构建过程体现了高度的系统性和严谨性。该数据集通过四个主要阶段完成构建:数据生成、GPT4筛选、人工验证以及监督微调。在数据生成阶段,团队收集了大量与IT运维相关的信息,确保数据的广泛性和代表性。随后,利用GPT4进行初步筛选,剔除不符合标准的数据。人工验证阶段进一步确保了数据的准确性和可靠性,最后通过监督微调优化模型性能。这一系列步骤确保了数据集的高质量和实用性。
特点
Owl-Bench数据集具有显著的特点,主要体现在其专注于IT运维领域的任务,如故障诊断和日志分析等。数据集分为两个主要部分:多项选择题和问答题,涵盖了广泛的IT运维场景。此外,数据集采用了双语指令数据,增强了其国际适用性。通过Homogeneous Markov Context Extension (HMCE)方法,数据集在处理长文本输入时表现出色,确保了模型在不同任务中的高效性和准确性。
使用方法
使用Owl-Bench数据集的方法相对直观且灵活。对于多项选择题部分,用户可以参考MC_readme文件中的详细说明进行操作。对于问答题部分,QA_readme文件提供了具体的指导。数据集提供了示例验证数据,方便用户快速上手并进行模型测试。用户可以根据实际需求选择不同的测试类型,灵活应用于各种IT运维任务中。通过这种方式,Owl-Bench不仅为研究人员提供了丰富的实验数据,也为实际应用中的模型优化和性能评估提供了有力支持。
背景与挑战
背景概述
随着信息技术的迅猛发展,IT运维领域面临着日益增长的数据处理与分析需求。传统的自然语言处理技术虽然在多个任务中展现了卓越的能力,但在专门针对IT运维的大规模语言模型(LLMs)开发方面仍存在显著空白。为此,研究团队于2024年推出了OWL,这是一个专为AIOps(人工智能运维)设计的大规模语言模型,旨在处理故障诊断、日志分析等IT运维相关任务。OWL模型基于OWL-Instruct数据集进行训练,该数据集包含了广泛的IT相关信息,并通过创新的同质马尔可夫上下文扩展方法(HMCE)解决了输入长度限制的问题。OWL的推出不仅填补了该领域的技术空白,也为IT运维技术的革新提供了新的视角。
当前挑战
OWL-Bench数据集的构建与应用面临多重挑战。首先,IT运维领域的数据具有高度的专业性和复杂性,如何有效地收集、整理和标注这些数据是一个巨大的挑战。其次,由于IT运维任务的多样性和动态性,模型需要具备跨领域和跨任务的适应能力,这对模型的参数效率调优提出了更高要求。此外,OWL-Bench的评估框架需要涵盖多种任务类型,如多项选择题和问答题,这对数据集的多样性和全面性提出了挑战。最后,如何在实际应用中验证和优化模型的性能,确保其在真实场景中的有效性和可靠性,也是该数据集面临的重要挑战。
常用场景
经典使用场景
Owl-Bench数据集在AIOps领域中被广泛应用于故障诊断和日志分析等任务。通过提供多选和问答两种形式的测试数据,研究人员能够评估和优化大型语言模型在IT操作中的表现。该数据集的设计使得模型能够在复杂的IT环境中进行高效的数据处理和分析,从而提升自动化运维的准确性和效率。
解决学术问题
Owl-Bench数据集解决了IT操作领域中缺乏专门针对大型语言模型评估的基准问题。通过提供丰富的IT相关任务数据,该数据集帮助研究人员验证模型在故障诊断、日志分析等任务中的性能,填补了现有模型在特定领域应用的空白。其引入的Homogeneous Markov Context Extension方法(HMCE)和混合适配器策略进一步提升了模型在不同任务中的参数效率调优能力。
衍生相关工作
Owl-Bench数据集的发布推动了AIOps领域的多项研究进展。基于该数据集,研究人员开发了多种改进的故障诊断和日志分析模型,进一步提升了IT操作的自动化水平。此外,该数据集还激发了更多关于大型语言模型在特定领域应用的探索,例如在网络安全和云计算中的应用,为相关领域的研究提供了新的思路和工具。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

Apple Stock Price Data

Historical stock price data for AAPL (apple)

kaggle 收录