five

Corn-Soy Data Layer|农业监测数据集|遥感技术数据集

收藏
Mendeley Data2024-03-27 更新2024-06-28 收录
农业监测
遥感技术
下载链接:
https://zenodo.org/record/4571628
下载链接
链接失效反馈
资源简介:
Dataset Abstract: Field-level monitoring of crop types in the United States via the Cropland Data Layer (CDL) has played an important role in improving production forecasts and enabling large-scale study of agricultural inputs and outcomes. Although CDL offers crop type maps across the conterminous US from 2008 onward, such maps are missing in many Midwestern states or are uneven in quality before 2008. To fill these data gaps, we used the now-public Landsat archive and cloud computing services to map corn and soybean at 30m resolution across the US Midwest from 1999-2018. Our training data were CDL from 2008-2018, and we validated the predictions on CDL 1999-2007 where available, county-level crop acreage statistics, and state-level crop rotation statistics. The corn-soybean maps, which we call the Corn-Soy Data Layer (CSDL), are publicly hosted on Google Earth Engine and also available for download on Zenodo. Summary of Methods: Using Google Earth Engine, we trained a random forest classifier to classify each pixel of the study area into corn, soybean, and an aggregated "other crops" class. CDL 2008-2018 data were used as labels. The features input to the model were harmonic regression coefficients fit to the NIR, SWIR1, SWIR2, and GCVI bands/indices of time series from Landsat 5, 7, and 8 Surface Reflectance observations. Cloudy pixels were masked out using the pixel_qa band provided with Landsat Surface Reflectance products. Map Legend: 0 = outside study area 1 = corn 5 = soy 9 = other crop 255 = non-crop (masked by NLCD) Values were chosen to be consistent with CDL values when possible. Usage Notes: We recommend that users consider metrics such as (1) user's and producer's accuracy with CDL and (2) R2 with NASS statistics across space and time to determine in which states/counties and years CSDL is of high quality. This can be done with the CSV file of user's and producer's accuracies included in this Zenodo, and annual county-level statistics and example code we have included in our repo at https://github.com/LobellLab/csdl. Updates: March 1, 2021: Fixed an issue where 255 (non-crop) values were represented as NAs instead. CSDL now contains the 255 values representing non-crop. October 20, 2020: Fixed projection issues in the previous version. The CSDL projection now matches that of CDL. July 13, 2020: We revised how we used NLCD to mask out non-crop pixels from our maps. Instead of using one cropland mask (the union of cropland across all NLCD maps) for all years of CSDL, we used a different cropland mask (the last available NLCD) for each year of CSDL. We also reprojected the CSDL maps to the same projection as CDL to make it easier for users to transition between or combine the two datasets.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

猫狗图像数据集

该数据集包含猫和狗的图像,每类各12500张。训练集和测试集分别包含10000张和2500张图像,用于模型的训练和评估。

github 收录

Tropicos

Tropicos是一个全球植物名称数据库,包含超过130万种植物的名称、分类信息、分布数据、图像和参考文献。该数据库由密苏里植物园维护,旨在为植物学家、生态学家和相关领域的研究人员提供全面的植物信息。

www.tropicos.org 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

eming/stock_price_trunked_128_12

该数据集包含股票交易相关的详细信息,如交易日期、收盘价、不同周期的移动平均线(MA3, MA5, MA10, MA20, MA60)、MACD指标、股票代码、预测值及预测日期。数据集分为训练集,共有121379个样本,总大小为1126032983字节。

hugging_face 收录