SciQ|科学教育数据集|考试评估数据集
收藏数据集概述
数据集名称
- SciQ
数据集内容
- 包含13,679个众包科学考试问题,涉及物理学、化学和生物学等多个科学领域。
数据集来源
- 可从Kaggle或Huggingface下载。
数据集用途
- 用于训练
flan-t5-base模型,以回答科学相关问题。
模型训练
训练环境
- 使用
Nvidia Tesla T4GPU,具有16GBVRAM,在Google Colab Free Tier上进行训练。
训练参数
batch size: 初始为8,后调整为32learning rate: 3e-4epochs: 初始为3,后调整为1
训练结果
training loss: 1.3092validation loss: 0.9788ROUGE-1: 0.4977ROUGE-2: 0.1207ROUGE-L: 0.4972ROUGE LSUM: 0.4968
模型部署
- 经过微调的模型
flan-t5-base-sciq已上传至Huggingface模型库,可从此处访问。

CE-CSL
CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。
arXiv 收录
flames-and-smoke-datasets
该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。
github 收录
中国区域250米植被覆盖度数据集(2000-2024)
该数据集是中国区域2000至2024年月度植被覆盖度产品,空间分辨率250米,合成方式采用月最大值合成,每年12期,共299期。本产品采用基于归一化植被指数(NDVI)像元二分模型,根据土地利用类型确定纯植被像元值和纯裸土像元值,实现植被覆盖度计算。本产品去除湖泊、河流、冰川/永久积雪等区域。其中,NDVI数据来源于国家青藏高原科学数据中心中国区域250米归一化植被指数数据集(2000-2024)产品。通过时空变化趋势分析检验法分析,该数据集符合时间变化趋势和空间变化趋势。该数据集能够为全国区域生态质量评价、重要生态空间调查评估等工作提供数据参考。
国家青藏高原科学数据中心 收录
Wind Turbine Data
该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。
www.kaggle.com 收录
PartNet
我们介绍了PartNet: 一个一致的、大规模的三维对象数据集,用细粒度的、实例级的和分层的三维零件信息进行注释。我们的数据集包括573,585个零件实例,超过26,671个3D模型,涵盖24个对象类别。该数据集支持并充当许多任务的催化剂,例如形状分析,动态3D场景建模和仿真,可承受分析等。使用我们的数据集,我们建立了用于评估3D零件识别的三个基准任务: 细粒度语义分割,分层语义分割和实例分割。我们对四种最先进的3D深度学习算法进行了基准测试,用于细粒度语义分割,并对三种基线方法进行了基准测试。我们还提出了一种新颖的零件实例分割方法,并证明了其优于现有方法的性能。
OpenDataLab 收录
