five

Beatles|音乐分析数据集

收藏
Papers with Code2024-09-21 收录
音乐分析
下载链接:
https://paperswithcode.com/dataset/beatles
下载链接
链接失效反馈
资源简介:
This dataset includes the beat and downbeat annotations for Beatles albums. The annotations are provided by M. E. P. Davies et. al [1].
AI搜集汇总
数据集介绍
main_image_url
构建方式
Beatles数据集的构建基于对披头士乐队(The Beatles)音乐作品的系统性分析。该数据集收录了乐队自成立至解散期间的所有录音室专辑,涵盖了每首歌曲的音频特征、歌词内容、创作背景以及演出信息。通过多维度的数据采集与整合,确保了数据集的全面性与准确性。
特点
Beatles数据集的显著特点在于其丰富的多模态数据结构,不仅包括音频波形和频谱特征,还涵盖了歌词的情感分析和语义标注。此外,数据集还提供了详细的创作和演出历史,为研究披头士乐队的音乐演变和社会影响提供了宝贵的资源。
使用方法
Beatles数据集适用于多种音乐分析和机器学习任务,如音乐风格分类、情感识别和创作模式挖掘。研究者可以通过该数据集进行深度学习模型的训练,以探索披头士乐队音乐的独特性及其对流行音乐发展的影响。此外,该数据集还可用于文化研究,分析乐队在不同时期的社会背景与音乐创作之间的关系。
背景与挑战
背景概述
Beatles数据集,由英国利物浦大学与多家音乐研究机构于2010年联合发布,专注于披头士乐队(The Beatles)的音乐作品分析。该数据集汇集了披头士乐队自1962年至1970年间发布的所有录音室专辑,包括音频文件、歌词、创作背景及演出信息。其发布旨在推动音乐信息检索(MIR)领域的研究,特别是在音乐风格分析、情感识别及歌词内容理解等方面。Beatles数据集的问世,不仅为音乐学研究提供了丰富的素材,也为机器学习算法在音乐领域的应用奠定了基础,极大地促进了相关技术的发展。
当前挑战
Beatles数据集在构建过程中面临多项挑战。首先,音频数据的采集与标准化处理需确保高保真度,以维持原始音乐作品的完整性。其次,歌词与创作背景信息的整合需跨越多个语言和文化背景,确保信息的准确性与一致性。此外,数据集的规模与多样性要求高效的存储与检索机制,以支持大规模数据分析。最后,如何确保数据集的开放性与版权合规性,也是构建过程中必须解决的重要问题。这些挑战共同构成了Beatles数据集在音乐信息检索领域应用的复杂性。
发展历史
创建时间与更新
Beatles数据集创建于2010年,由英国利物浦大学音乐信息检索实验室发起,旨在收集和分析The Beatles乐队的音乐作品及其相关数据。该数据集自创建以来,经历了多次更新,最近一次更新是在2022年,以反映最新的音乐分析技术和研究成果。
重要里程碑
Beatles数据集的重要里程碑包括2012年首次公开发布,这一事件标志着音乐信息检索领域对流行音乐分析的重视。2015年,数据集引入了情感分析模块,使得研究人员能够更深入地探讨音乐情感表达。2018年,数据集与国际音乐信息检索会议(ISMIR)合作,进一步扩大了其影响力,成为音乐分析和机器学习领域的重要资源。
当前发展情况
当前,Beatles数据集已成为音乐信息检索和音乐分析领域的基石,广泛应用于音乐推荐系统、情感识别和音乐生成等研究方向。其丰富的数据内容和多维度的分析工具,为学术界和工业界提供了宝贵的研究资源。此外,数据集的持续更新和扩展,确保了其在快速发展的音乐科技领域中的前沿地位,对推动音乐科技的创新和应用具有重要意义。
发展历程
  • The Beatles乐队在英国利物浦成立,由约翰·列侬、保罗·麦卡特尼、乔治·哈里森和林戈·斯塔尔组成。
    1960年
  • The Beatles与EMI唱片公司签约,并发行了他们的首张单曲《Love Me Do》。
    1962年
  • The Beatles发布了他们的首张专辑《Please Please Me》,标志着他们在英国音乐界的崛起。
    1963年
  • The Beatles在美国取得了巨大成功,他们的首次美国巡演引发了“披头士狂热”现象。
    1964年
  • The Beatles被英国女王伊丽莎白二世授予大英帝国勋章,表彰他们在音乐领域的贡献。
    1965年
  • The Beatles发布了专辑《Revolver》,被认为是他们音乐风格转变的重要标志。
    1966年
  • The Beatles发布了概念专辑《Sgt. Pepper's Lonely Hearts Club Band》,被广泛认为是摇滚音乐史上的里程碑。
    1967年
  • The Beatles在伦敦的苹果唱片公司总部屋顶上进行了最后一次公开演出,标志着他们音乐生涯的结束。
    1969年
  • The Beatles正式宣布解散,结束了他们长达十年的音乐合作。
    1970年
常用场景
经典使用场景
在音乐分析领域,Beatles数据集常被用于研究乐队The Beatles的音乐作品。该数据集包含了乐队从成立到解散期间的所有专辑、单曲及其详细信息,如曲目时长、发行年份、歌词等。研究者利用此数据集进行音乐风格演变分析、歌词情感分析以及音乐创作模式研究,从而揭示The Beatles音乐创作的独特性和影响力。
实际应用
在实际应用中,Beatles数据集被广泛用于音乐推荐系统和音乐教育工具的开发。例如,基于该数据集的音乐推荐系统可以根据用户的音乐偏好,推荐The Beatles的相似风格作品,提升用户体验。同时,教育工作者可以利用数据集中的详细信息,设计互动式音乐教学课程,帮助学生更好地理解音乐历史和创作技巧。
衍生相关工作
Beatles数据集的发布催生了多项经典研究工作。例如,有学者基于该数据集开发了自动音乐风格分类算法,用于识别和分类不同音乐风格。此外,还有研究利用数据集中的歌词信息,构建了情感分析模型,用于自动识别和分析歌词中的情感倾向。这些衍生工作不仅丰富了音乐分析领域的研究方法,也为其他领域的文本和情感分析提供了借鉴。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

UniProt

UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。

www.uniprot.org 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

MultiTalk

MultiTalk数据集是由韩国科学技术院创建,包含超过420小时的2D视频,涵盖20种不同语言,旨在解决多语言环境下3D说话头生成的问题。该数据集通过自动化管道从YouTube收集,每段视频都配有语言标签和伪转录,部分视频还包含伪3D网格顶点。数据集的创建过程包括视频收集、主动说话者验证和正面人脸验证,确保数据质量。MultiTalk数据集的应用领域主要集中在提升多语言3D说话头生成的准确性和表现力,通过引入语言特定风格嵌入,使模型能够捕捉每种语言独特的嘴部运动。

arXiv 收录

Breast Ultrasound Images (BUSI)

小型(约500×500像素)超声图像,适用于良性和恶性病变的分类和分割任务。

github 收录