US EPA Air Quality System (AQS)|空气质量监测数据集|环境政策数据集
收藏
- 美国环境保护署(EPA)成立,开始收集空气质量数据。
- EPA启动了空气质量监测系统(AQS),作为其空气质量监测和报告的核心工具。
- AQS首次公开发布空气质量数据,供公众和研究人员使用。
- 随着《清洁空气法修正案》的通过,AQS的数据收集和报告功能得到显著扩展。
- AQS开始提供在线数据访问,使得数据获取更加便捷和透明。
- AQS引入了新的数据处理和分析工具,提高了数据的质量和可用性。
- AQS继续更新和扩展其数据库,以适应新的空气质量监测需求和技术进步。
- 1The US EPA Air Quality System (AQS): Design, Implementation, and EvolutionUnited States Environmental Protection Agency · 2005年
- 2Air Quality and Health Impacts of Wildfires: A ReviewUniversity of California, Davis · 2021年
- 3Long-term Trends in Air Quality and Mortality in the United StatesHarvard T.H. Chan School of Public Health · 2019年
- 4Air Quality and Climate Change: A Review of Interactions and Future ChallengesUniversity of Cambridge · 2020年
- 5Air Quality Monitoring and Modeling in Urban Areas: A ReviewMassachusetts Institute of Technology · 2022年
HUSTgearbox
This reposotory release a gearbox failure dataset, which can support intelliegnt fault diagnosis research
github 收录
38-Cloud
该数据集包含38幅Landsat 8场景图像及其手动提取的像素级云检测地面实况。数据集被分割成多个384*384的补丁,适合深度学习语义分割算法。训练集有8400个补丁,测试集有9201个补丁。每个补丁包含4个对应的谱通道:红色、绿色、蓝色和近红外。
github 收录
基于站点观测的中国1km土壤湿度日尺度数据集(2000-2022)
本研究提供了中国范围1km高质量的土壤湿度数据集-SMCI1.0(Soil Moisture of China by in situ data, version 1.0),SMCI1.0是包含2000-2022年、日尺度、以10厘米为间隔10层深度(10-100cm)的高时空分辨率土壤湿度,数据单位为0.001m³/m³,缺失值为-999,投影为WGS1984。该数据集是以中国气象局提供的1,648个站点观测10层土壤湿度作为基准,使用ERA5_Land气象强迫数据、叶面积指数(LAI)、土地覆盖类型(Landtypes)、地形(DEM)和土壤特性(Soil properties)作为协变量,通过机器学习方式获得。本研究进行了两组实验以验证SMCI1.0的精度,时间尺度上:ubRMSE为0.041-0.052,R为0.883-0.919;空间尺度上:ubRMSE为0.045-0.051,R为0.866-0.893。 由于SMCI1.0是基于实地观测的土壤湿度,它可以作为现有基于模型和卫星数据集的有效补充。该数据产品可用于各种水文、气象、生态分析和建模,尤其在需要高质量、高分辨率土壤湿度的应用上至关重要。有关数据集的引用及详细描述,请阅读说明文档。为便于使用,本研究提供了两种不同分辨率的版本:30 秒(~1km)和0.1度(~9km)。
国家青藏高原科学数据中心 收录
HazyDet
HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。
arXiv 收录
MealRec+
MealRec+数据集是由武汉理工大学研究团队创建的,旨在支持个性化和健康饮食推荐的研究。该数据集包含7280条记录,涵盖了餐食与菜品之间的关联信息,以及用户与餐食的交互数据。创建过程中,研究团队采用了模拟方法,从用户与菜品交互数据中推导出餐食与菜品的关联及用户与餐食的交互。此外,数据集还利用了世界卫生组织和英国食品标准局的两个著名营养标准来计算餐食的健康评分。MealRec+数据集的应用领域主要集中在通过分析用户偏好和餐食健康性,提供更健康的餐食推荐,以促进用户的健康饮食习惯。
arXiv 收录