five

轴承故障数据集|轴承故障分析数据集|机械故障诊断数据集

收藏
github2024-06-06 更新2024-06-25 收录
轴承故障分析
机械故障诊断
下载链接:
https://github.com/hatton613/bearing-dataset-collection
下载链接
链接失效反馈
资源简介:
本项目集成了多个公开的轴承故障数据集,所有数据均被处理为1秒/个的数据样本,并使用fft得到其频域特征。支持通过数据集、通道、故障、严重程度对所有样本进行筛选,并选择时域或频域显示。
创建时间:
2024-05-30
原始信息汇总

轴承振动公开数据集集合

数据集集成

本项目集成了多个公开数据集的数据内容,并处理为相同的数据格式(所有数据均被处理为1秒/个的数据样本,并使用fft得到其频域特征)。

样本筛选

可以通过数据集、通道、故障、严重程度对所有样本进行筛选,并选择时域或频域显示。为了显示的流畅性,绘图默认使用下采样方式进行显示(如下采样倍率设为5,则每5个采样点显示1个)。

时域/频谱分析

点击样本右侧的绘制按钮,可以可视化显示样本频谱。前端自动将幅值最大的频率点作为特征频率,并默认使用标尺显示各倍频。特征频率和标尺间隔可通过拖动滑块快速调节,也可通过按钮与输入框精确调节。

跨数据集、故障类型对比

支持同时显示多个数据集、多种不同故障类型的频域/时域信号进行对比,挖掘故障特征。

AI搜集汇总
数据集介绍
main_image_url
构建方式
轴承故障数据集的构建方式体现了对多个公开数据集的集成与标准化处理。首先,该数据集从多个公开来源收集原始数据,随后通过统一的数据处理流程将其转换为相同格式。每个数据样本被处理为1秒的时长,并通过快速傅里叶变换(FFT)提取其频域特征。这一过程确保了数据的一致性和可比性,为后续的分析和应用提供了坚实的基础。
特点
轴承故障数据集的显著特点在于其多样性和可操作性。数据集不仅涵盖了多种故障类型和严重程度,还支持通过不同的通道进行筛选,从而提供了丰富的故障特征信息。此外,该数据集支持时域和频域的分析,用户可以通过可视化工具直观地观察和对比不同样本的频谱特征。这种灵活性使得数据集在故障诊断和预测领域具有广泛的应用潜力。
使用方法
使用轴承故障数据集时,用户可以通过前端界面进行样本筛选和频谱分析。前端界面基于Vue.js和Element-Plus构建,提供了直观的控件和图像绘制功能。用户可以选择特定的数据集、通道、故障类型和严重程度,进行时域或频域的信号对比。此外,数据集还支持跨数据集和故障类型的对比分析,帮助用户深入挖掘故障特征。后端部分使用Python和FastAPI实现,确保了数据处理的高效性和稳定性。
背景与挑战
背景概述
轴承故障数据集是由多个公开数据集集成而成的综合性数据集,旨在为轴承故障诊断领域提供丰富的数据资源。该数据集的创建时间未明确提及,但其主要研究人员或机构通过GitHub项目页面进行协作,展示了其在轴承故障诊断领域的研究成果。核心研究问题围绕轴承故障的检测与分类,通过集成不同数据集并处理为统一的格式,为研究人员提供了标准化的数据样本。这一数据集的推出,极大地推动了轴承故障诊断技术的发展,为相关领域的研究提供了坚实的基础。
当前挑战
轴承故障数据集在构建过程中面临多项挑战。首先,数据集的集成需要处理来自不同来源的数据,确保其格式的一致性,这涉及到复杂的数据预处理工作。其次,样本筛选和分析过程中,如何准确识别和区分不同故障类型及其严重程度,是一个技术难题。此外,跨数据集和故障类型的对比分析,要求算法具备高度的鲁棒性和精确性。最后,数据集的公开使用需注意版权问题,确保所有数据来源的合法性和透明性,避免潜在的法律纠纷。
常用场景
经典使用场景
轴承故障数据集在机械工程领域中具有广泛的应用,尤其在故障诊断和预测维护方面。该数据集通过集成多个公开数据集,提供了标准化格式的轴承振动数据,便于研究人员进行频域和时域分析。经典使用场景包括利用这些数据进行轴承故障的分类和预测模型训练,通过对比不同故障类型和严重程度的频域特征,实现对轴承健康状态的精准评估。
解决学术问题
该数据集解决了机械工程领域中轴承故障诊断的常见学术问题,如故障特征提取和模式识别。通过提供标准化和多样化的故障数据,研究人员可以开发和验证新的故障诊断算法,提高故障检测的准确性和可靠性。此外,该数据集还促进了跨数据集和故障类型的对比研究,有助于揭示不同故障模式之间的共性和差异,推动了故障诊断技术的发展。
衍生相关工作
基于轴承故障数据集,已衍生出多项经典工作,包括故障诊断算法的研究和优化、预测维护系统的开发以及智能监控技术的应用。这些工作不仅提升了轴承故障诊断的准确性,还推动了相关领域的技术进步。例如,一些研究通过深度学习方法对数据集进行分析,显著提高了故障识别的精度,为工业界提供了新的解决方案。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Alexa Domains

该数据集由前 100 万个网站的 URL 组成。 域名使用 Alexa 流量排名进行排名 是使用浏览行为的组合来确定的 网站上的用户数、唯一身份访问者的数量和网页浏览量。更详细地说,唯一身份访问者是 在给定日期访问网站的唯一用户数, 和 pageviews 是用户 URL 请求的总数 网站。但是,对同一网站的多个请求 在同一天被计为一次综合浏览量。网站 独立访问者和综合浏览量的最高组合 排名最高

OpenDataLab 收录

中亚主要国家的原油资源的储量、产量、消费量及其占世界比重(1985-2016)

中亚五国中,石油资源主要分布在哈萨克斯坦、乌兹别克斯坦、土库曼斯坦三个国家。根据BP世界能源统计年鉴,经整理、抽取、计算和汇总后,形成中亚主要国家(哈萨克斯坦、乌兹别克斯坦、土库曼斯坦)原油资源的储量、产量、消费量及其占世界比重的统计表。 主要指标包括: (1)储量,1991-2016年,单位:百万吨 (2)产量,1985-2016年,单位:百万吨 (3)储产比,1991-2016年,单位:百万吨 (4)消费量,1985-2016年,单位:百万吨 (5)产消差额,1985-2016年,单位:百万吨 此外,以上数据均包括中亚地区的哈萨克斯坦、乌兹别克斯坦、土库曼斯坦、三国汇总以及世界总量的情况。

地球大数据科学工程 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

Materials Project

材料项目是一组标有不同属性的化合物。数据集链接: MP 2018.6.1(69,239 个材料) MP 2019.4.1(133,420 个材料)

OpenDataLab 收录

YOLO-dataset

该数据集用于训练YOLO模型,包括分类、检测和姿态识别模型。目前支持v8版本,未来计划支持更多版本。

github 收录