five

WirelessMathBench|无线通信数据集|数学模型评估数据集

收藏
arXiv2025-05-20 更新2025-05-22 收录
无线通信
数学模型评估
下载链接:
https://lixin.ai/WirelessMathBench
下载链接
链接失效反馈
资源简介:
WirelessMathBench是一个专门为评估大型语言模型(LLMs)在无线通信领域的数学建模能力而设计的基准数据集。该数据集包含来自40篇顶尖研究论文的587个精心挑选的问题,涵盖了从基础的多选题到复杂的方程式补全任务,所有问题均严格遵守物理和维度约束。数据集旨在推动更强大、更适应领域的LLMs的发展,用于无线系统分析和更广泛的工程应用。
提供机构:
新加坡南洋理工大学电气与电子工程学院
创建时间:
2025-05-20
原始信息汇总

WirelessMathBench 数据集概述

基本信息

  • 名称: WirelessMathBench
  • 描述: 专为评估大语言模型(LLMs)在无线通信领域数学建模能力设计的基准测试
  • 作者: Xin Li, Mengbing Liu, Li Wei, Jiancheng An, Mérouane Debbah, Chau Yuen
  • 机构:
    • 南洋理工大学电气与电子工程学院(新加坡)
    • 哈利法大学计算机与信息工程系(阿联酋)
  • 发表: ACL 2025 Findings

数据集内容

  • 问题数量: 587道精选题目
  • 来源: 来自40篇无线通信领域前沿研究论文
  • 任务类型:
    • 多选题(MCQs)
    • 渐进式掩码填空(三个掩码级别)
    • 完整方程推导(FEC)
  • 主题覆盖:
    • 模型类主题:
      • RIS(19篇论文)
      • MIMO(12篇论文)
      • UAV(6篇论文)
      • ISAC(6篇论文)
      • Satellite(4篇论文)
      • SIM(3篇论文)
      • NOMA(2篇论文)
    • 问题类主题:
      • 波束成形(18篇论文)
      • 信道估计(12篇论文)
      • 性能分析(8篇论文)
      • 轨迹设计(5篇论文)
      • 功率分配(5篇论文)
      • 资源管理(4篇论文)

实验结果

  • 最佳平均准确率: 38.05%(DeepSeek-R1)
  • 最佳MCQ准确率: 76.00%(DeepSeek-R1)
  • 最佳完整方程推导准确率: 7.83%(DeepSeek-R1)

模型性能对比

模型 MCQ Level 1 Level 2 Level 3 FEC 平均准确率
DeepSeek-R1 76.00% 60.00% 34.91% 12.50% 7.83% 38.05%
OpenAI-o1 66.40% 59.17% 32.17% 8.04% 6.96% 34.55%
DeepSeek-V3 78.40% 50.00% 24.35% 6.25% 6.96% 33.19%
GPT-4o 72.80% 42.50% 28.70% 6.25% 4.35% 30.92%
Gemini-1.5-pro 65.60% 43.33% 29.57% 9.82% 6.09% 30.88%

错误分析(DeepSeek-R1)

  • 31%: 部分填充不匹配
  • 29%: 符号误解
  • 24%: 错误方程推导
  • 11%: 无关系统混淆

资源获取

  • 论文引用: bibtex @inproceedings{li2025wirelessmathbench, title={WirelessMathBench: A Mathematical Modeling Benchmark for LLMs in Wireless Communications}, author={Li, Xin and Liu, Mengbing and Wei, Li and An, Jiancheng and Debbah, Mérouane and Yuen, Chau}, booktitle={Findings of the Association for Computational Linguistics: ACL 2025}, year={2025} }

  • 包含内容:

    • 587道问题的完整数据集
    • 基准测试评估工具包
    • 基线模型参考实现
    • 数据集结构和评估指标文档
AI搜集汇总
数据集介绍
main_image_url
构建方式
WirelessMathBench数据集的构建过程体现了严谨的学术规范与工程实践的深度融合。研究团队从40篇顶级会议期刊论文中系统提取587个数学建模问题,通过半自动化流程结合专家验证的三阶段筛选机制:首先采用定制化LLM模板从论文中提取系统模型与核心方程,随后由通信领域专家进行符号一致性校验与物理维度审核,最终通过多轮交叉验证确保问题质量。特别值得注意的是,团队创新性地设计了渐进式掩码策略,将每个核心方程分解为多选题、部分掩码填空和全掩码推导三个难度层级,从而构建出具有连续挑战性的任务体系。
特点
该数据集最显著的特征在于其真实的工程复杂性与多粒度评估维度。所有问题均源自最新无线通信研究成果,涵盖MIMO、RIS、NOMA等9大技术场景和波束成形、信道估计等7类核心问题,严格遵循电磁传播定律与矩阵运算维度约束。数据集中32%的问题包含复合矩阵运算,28%需要处理非线性能量约束,19%涉及多阶段符号推导,呈现出专业领域特有的数学建模挑战。特别设计的渐进式任务体系(从基础多选题到全方程推导)可精确诊断模型在不同认知层级的表现,其中全掩码推导任务的平均成功率仅7.83%,显著揭示了当前LLMs在工程数学推理中的局限性。
使用方法
使用该数据集时需要遵循其设计的层次化评估框架。对于基础研究,建议从多选题入手验证模型的基础概念掌握度;进阶研究可采用渐进式掩码任务分析模型的符号推理链条完整性;全方程推导任务适用于评估模型的端到端数学建模能力。评估时需配套使用官方工具包,其内置的维度验证器可自动检测物理量纲一致性,而基于GPT-4o的答案匹配算法能处理数学表达式的语义等价性。值得注意的是,所有实验应保持零样本设置以反映模型原生能力,且需特别关注错误模式分析模块输出的四类典型错误分布(部分匹配错误31%、符号误解29%、推导路径错误24%、系统混淆11%),这些指标对改进模型架构具有重要指导价值。
背景与挑战
背景概述
WirelessMathBench是由新加坡南洋理工大学的Xin Li、Mengbing Liu等研究人员于2025年提出的专业评估基准,旨在测试大语言模型在无线通信领域的数学建模能力。该数据集包含从40篇前沿研究论文中精心筛选的587个问题,涵盖多输入多输出系统、可重构智能表面等核心场景,以及波束成形、信道估计等关键技术挑战。作为首个聚焦无线通信数学推理的基准,其创新性地设计了从基础选择题到完整方程推导的多层次任务结构,为评估语言模型在工程数学领域的真实能力提供了标准化测试平台。
当前挑战
WirelessMathBench面临双重挑战:在领域问题层面,需解决无线通信特有的高维矩阵运算、物理约束保持及多步符号推导等复杂数学建模问题,当前最优模型DeepSeek-R1在完整方程推导任务中准确率仅7.83%;在构建过程中,需克服专业论文的数学表达式提取、维度一致性验证等难题,通过半自动化流程与领域专家验证相结合的方式,确保问题的物理合理性与工程相关性。
常用场景
经典使用场景
WirelessMathBench作为专为无线通信领域设计的数学建模基准,其经典使用场景主要集中在评估大型语言模型(LLMs)在复杂数学推理任务中的表现。通过包含从基础选择题到复杂方程补全的多层次任务,该数据集能够全面测试模型在无线通信系统建模中的符号操作、维度约束和物理可行性验证能力。例如,在MIMO系统信道估计或RIS相位矩阵推导等任务中,模型需结合领域知识完成多步数学推导,这为研究LLMs在专业工程场景下的推理局限性提供了标准化测试平台。
实际应用
在实际应用层面,WirelessMathBench为AI辅助无线系统设计提供了关键验证工具。通信工程师可通过该基准筛选具备可靠数学推导能力的LLMs,用于自动生成波束赋形权重、优化资源分配方程等任务。例如,在6G智能超表面(RIS)配置中,模型需准确重构包含复数相位项的矩阵运算,而该数据集的渐进掩码任务能有效检验此类能力。此外,电信企业可基于基准结果开发领域自适应训练策略,提升LLMs在基站部署、频谱规划等场景的实用价值。
衍生相关工作
该数据集已衍生出多个重要研究方向:首先,TelecomGPT等专用模型通过在该基准上的迭代优化,实现了电信协议代码生成能力的提升;其次,催生了如《U-MATH》等跨学科数学推理基准的构建,推动LLMs在化学、物理等领域的符号计算研究;第三,其渐进掩码评估方法被MLAgentBench等基准借鉴,用于测试模型在机器学习超参数优化中的多步推理能力。值得注意的是,DeepSeek-R1采用的强化学习推理框架正是受WirelessMathBench揭示的维度一致性错误启发而设计。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

Tropicos

Tropicos是一个全球植物名称数据库,包含超过130万种植物的名称、分类信息、分布数据、图像和参考文献。该数据库由密苏里植物园维护,旨在为植物学家、生态学家和相关领域的研究人员提供全面的植物信息。

www.tropicos.org 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2020)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 70 年(1951~2020 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 70 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。2021 年至 2024 年的 CMFD 数据正在制作中,计划于 2025 年上半年发布,从而使 CMFD 2.0 延伸至 2024 年底。

国家青藏高原科学数据中心 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录