normalcomputing/wikiqa-counterfactual|反事实推理数据集|自然语言处理数据集
收藏数据集概述
名称: Long-range Counterfactual Retrieval Benchmark
开发机构: Normal Computing, Adapted from Abacus AI
许可证: Apache 2.0
数据集内容
- 数据来源: 原始数据集由Abacus AI提供,基于WikiQA-Free_Form_QA数据集。
- 数据构成: 包含Wikipedia文章(2-16千字)和相应的问题。
- 数据修改: 将标记的答案替换为现实但错误的答案,以控制预训练期间记忆的事实。例如,将“Lee Hazlewood”替换为“Terry Allen”,并要求模型识别歌曲作者。
数据集结构
- 分割: 2k, 4k, 8k, 16k
- 列名:
split
: 样本所属的分割question
: 查询问题prompt
: 提示信息document
: 原始Wikipedia文章context
: 编辑后的Wikipedia文章original_eval
: 编辑前的原始答案answer
: 编辑后的正确答案n_replacements
: 在context
中将original_eval
替换为answer
的次数
数据集用途
用于评估模型在长范围反事实检索任务中的表现,通过提供编辑后的Wikipedia文章和问题,测试模型对预训练记忆事实的控制能力。
CatMeows
该数据集包含440个声音样本,由21只属于两个品种(缅因州库恩猫和欧洲短毛猫)的猫在三种不同情境下发出的喵声组成。这些情境包括刷毛、在陌生环境中隔离和等待食物。每个声音文件都遵循特定的命名约定,包含猫的唯一ID、品种、性别、猫主人的唯一ID、录音场次和发声计数。此外,还有一个额外的zip文件,包含被排除的录音(非喵声)和未剪辑的连续发声序列。
huggingface 收录
URPC系列数据集, S-URPC2019, UDD
URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。
github 收录
中国1km分辨率逐月降水量数据集(1901-2023)
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
国家青藏高原科学数据中心 收录
中国30米分辨率土壤可蚀性因子数据集
该数据集为2018年中国30米分辨率土壤可蚀性因子(K)栅格数据,数据是利用中国1979-1994年的全国第二次土壤普查的成果数据进行计算;再利用径流小区观测数据修正计算结果;将修订结果利用反距离权重插值法插值生成栅格数据。特殊地类河湖库塘、冰川及永久积雪、裸岩土地类型K因子值强制赋值为0。如果用户采用的土地利用精度较高,建议重新对以下土地类型的K因子强制赋值为0:河湖库塘、冰川及永久积雪、裸岩。如果有K值为0,但不属于上述类型的,K因子可按如下原则:取邻近相同土地类型图斑的K值,或取与该图斑邻近且不等于0的所有图斑K值的平均值。
国家地球系统科学数据中心 收录
LIDC-IDRI
LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。
OpenDataLab 收录