five

Data from: Misuse of bird digital distribution maps creates reversed spatial diversity patterns in the Amazon|鸟类分布数据集|生态学数据集

收藏
DataONE2017-05-05 更新2024-06-26 收录
鸟类分布
生态学
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
It is well known that bird richness in the Amazon is greater in upland forests and that seasonally flooded forest is particularly species poor. However, the misleading pattern of greater bird richness in seasonally flooded forest has emerged seemingly unnoticed numerous times in richness maps in the literature. We hypothesize that commission errors in digital distribution maps (DDMs) are the cause behind the misleading richness pattern. In the Amazon, commission errors are a consequence of the different methodological treatment given to large-ranged versus small-ranged habitat specialists when mapping distributions. DDMs of 1007 Amazonian birds were examined, and maps that had commission errors were corrected. We generated two richness maps, one from the overlay of original DDMs and another from the overlay of the corrected ones. We identified 291 species whose distribution maps had errors. In the original data, seasonally flooded forests showed higher species richness than upland forest, but this pattern was reverted in the corrected richness map. Commission errors were 35 times more likely in the seasonally flooded forest. We conclude that DDMs accurately portray the distribution of single species in the Amazon. Commission errors in individual maps, however, accumulate when they are overlaid, explaining the misleading pattern for birds in the Amazon. DDMs can continue to be used mapping richness, as long as, at a regional scale: (1) basic map refinements are carried, or (2) only small-range species are used for mapping species richness.
创建时间:
2017-05-05
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

Yahoo Finance

Dataset About finance related to stock market

kaggle 收录

UAVDT

UAVDT是一个用于目标检测任务的数据集。

github 收录

Traditional-Chinese-Medicine-Dataset-SFT

该数据集是一个高质量的中医数据集,主要由非网络来源的内部数据构成,包含约1GB的中医各个领域临床案例、名家典籍、医学百科、名词解释等优质内容。数据集99%为简体中文内容,质量优异,信息密度可观。数据集适用于预训练或继续预训练用途,未来将继续发布针对SFT/IFT的多轮对话和问答数据集。数据集可以独立使用,但建议先使用配套的预训练数据集对模型进行继续预训练后,再使用该数据集进行进一步的指令微调。数据集还包含一定比例的中文常识、中文多轮对话数据以及古文/文言文<->现代文翻译数据,以避免灾难性遗忘并加强模型表现。

huggingface 收录

网易云音乐数据集

该数据集包含了网易云音乐平台上的歌手信息、歌曲信息和歌单信息,数据通过爬虫技术获取并整理成CSV格式,用于音乐数据挖掘和推荐系统构建。

github 收录