five

Sowing Seeds: A case study of training interventions to support new RDM requirements in environmental and agricultural research at the University of Guelph.|数据管理数据集|农业研究数据集

收藏
DataONE2022-03-11 更新2024-06-08 收录
数据管理
农业研究
下载链接:
https://search.dataone.org/view/https://doi.org/10.5683/SP3/14DHAT
下载链接
链接失效反馈
资源简介:
The Ontario Agri-Food Innovation Alliance (the Alliance) is a major multi-year partnership between the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) and the University of Guelph. The Food from Thought program is funded in part for a 7-year term from the Canada First Research Excellence Fund (CFREF), a Tri-Agency initiative. In 2018, these two programs established new funding requirements, requiring a data management plan (DMP) for approved research projects at the University of Guelph. These requirements centred on improving the effectiveness and efficiency of research projects through the implementation of sound data stewardship practices when collecting, analyzing, storing, preserving, and, when possible, sharing research data. As part of the funders’ commitment to improved data stewardship, each approved research project would include the submission of a DMP to the relevant funder. A suite of support services and resources were developed as a collaborative pilot project between the Library and the Office of Research to assist researchers in meeting the new requirements. Central to this project was the design of an online agri-food DMP template.The scope for this project included research funded between September 2018 until December 2019 covering 106 Alliance research projects and 45 Food from Thought projects. This pilot project built upon existing local RDM support and is based on identified international best practices. Following the end of the pilot project, a review was undertaken by the Office of Research, Agri-Food Partnership and the Library to assess the value and effectiveness of the RDM supports with particular emphasis on the efficacy of the DMP template and rollout. This survey comprises a major source of information for the review.
创建时间:
2023-12-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

LinkedIn Salary Insights Dataset

LinkedIn Salary Insights Dataset 提供了全球范围内的薪资数据,包括不同职位、行业、地理位置和经验水平的薪资信息。该数据集旨在帮助用户了解薪资趋势和市场行情,支持职业规划和薪资谈判。

www.linkedin.com 收录

OpenPose

OpenPose数据集包含人体姿态估计的相关数据,主要用于训练和评估人体姿态检测算法。数据集包括多视角的图像和视频,标注了人体关键点位置,适用于研究人体姿态识别和动作分析。

github.com 收录

Tropicos

Tropicos是一个全球植物名称数据库,包含超过130万种植物的名称、分类信息、分布数据、图像和参考文献。该数据库由密苏里植物园维护,旨在为植物学家、生态学家和相关领域的研究人员提供全面的植物信息。

www.tropicos.org 收录