five

Sowing Seeds: A case study of training interventions to support new RDM requirements in environmental and agricultural research at the University of Guelph.|数据管理数据集|农业研究数据集

收藏
DataONE2022-03-11 更新2024-06-08 收录
数据管理
农业研究
下载链接:
https://search.dataone.org/view/https://doi.org/10.5683/SP3/14DHAT
下载链接
链接失效反馈
资源简介:
The Ontario Agri-Food Innovation Alliance (the Alliance) is a major multi-year partnership between the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) and the University of Guelph. The Food from Thought program is funded in part for a 7-year term from the Canada First Research Excellence Fund (CFREF), a Tri-Agency initiative. In 2018, these two programs established new funding requirements, requiring a data management plan (DMP) for approved research projects at the University of Guelph. These requirements centred on improving the effectiveness and efficiency of research projects through the implementation of sound data stewardship practices when collecting, analyzing, storing, preserving, and, when possible, sharing research data. As part of the funders’ commitment to improved data stewardship, each approved research project would include the submission of a DMP to the relevant funder. A suite of support services and resources were developed as a collaborative pilot project between the Library and the Office of Research to assist researchers in meeting the new requirements. Central to this project was the design of an online agri-food DMP template.The scope for this project included research funded between September 2018 until December 2019 covering 106 Alliance research projects and 45 Food from Thought projects. This pilot project built upon existing local RDM support and is based on identified international best practices. Following the end of the pilot project, a review was undertaken by the Office of Research, Agri-Food Partnership and the Library to assess the value and effectiveness of the RDM supports with particular emphasis on the efficacy of the DMP template and rollout. This survey comprises a major source of information for the review.
创建时间:
2023-12-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

ArXiv

ArXiv数据集包含了来自arXiv.org的学术论文元数据,涵盖了物理学、数学、计算机科学、定量生物学、定量金融、统计学、电气工程和系统科学等多个领域的研究论文。数据集包括论文的标题、作者、摘要、提交日期、修改日期、DOI(数字对象标识符)等信息。

www.kaggle.com 收录

Hang Seng Index

恒生指数(Hang Seng Index)是香港股市的主要股票市场指数,由恒生银行旗下的恒生指数有限公司编制。该指数涵盖了香港股票市场中最具代表性的50家上市公司,反映了香港股市的整体表现。

www.hsi.com.hk 收录

VisDrone2019

VisDrone2019数据集由AISKYEYE团队在天津大学机器学习和数据挖掘实验室收集,包含288个视频片段共261,908帧和10,209张静态图像。数据集覆盖了中国14个不同城市的城市和乡村环境,包括行人、车辆、自行车等多种目标,以及稀疏和拥挤场景。数据集使用不同型号的无人机在各种天气和光照条件下收集,手动标注了超过260万个目标边界框,并提供了场景可见性、对象类别和遮挡等重要属性。

github 收录