five

Sowing Seeds: A case study of training interventions to support new RDM requirements in environmental and agricultural research at the University of Guelph.|数据管理数据集|农业研究数据集

收藏
DataONE2022-03-11 更新2024-06-08 收录
数据管理
农业研究
下载链接:
https://search.dataone.org/view/https://doi.org/10.5683/SP3/14DHAT
下载链接
链接失效反馈
资源简介:
The Ontario Agri-Food Innovation Alliance (the Alliance) is a major multi-year partnership between the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) and the University of Guelph. The Food from Thought program is funded in part for a 7-year term from the Canada First Research Excellence Fund (CFREF), a Tri-Agency initiative. In 2018, these two programs established new funding requirements, requiring a data management plan (DMP) for approved research projects at the University of Guelph. These requirements centred on improving the effectiveness and efficiency of research projects through the implementation of sound data stewardship practices when collecting, analyzing, storing, preserving, and, when possible, sharing research data. As part of the funders’ commitment to improved data stewardship, each approved research project would include the submission of a DMP to the relevant funder. A suite of support services and resources were developed as a collaborative pilot project between the Library and the Office of Research to assist researchers in meeting the new requirements. Central to this project was the design of an online agri-food DMP template.The scope for this project included research funded between September 2018 until December 2019 covering 106 Alliance research projects and 45 Food from Thought projects. This pilot project built upon existing local RDM support and is based on identified international best practices. Following the end of the pilot project, a review was undertaken by the Office of Research, Agri-Food Partnership and the Library to assess the value and effectiveness of the RDM supports with particular emphasis on the efficacy of the DMP template and rollout. This survey comprises a major source of information for the review.
创建时间:
2023-12-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

PCLT20K

PCLT20K数据集是由湖南大学等机构创建的一个大规模PET-CT肺癌肿瘤分割数据集,包含来自605名患者的21,930对PET-CT图像,所有图像都带有高质量的像素级肿瘤区域标注。该数据集旨在促进医学图像分割研究,特别是在PET-CT图像中肺癌肿瘤的分割任务。

arXiv 收录

UniProt

UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。

www.uniprot.org 收录

FAOSTAT Agricultural Data

FAOSTAT Agricultural Data 是由联合国粮食及农业组织(FAO)提供的全球农业数据集。该数据集涵盖了农业生产、贸易、价格、土地利用、水资源、气候变化、人口统计等多个方面的详细信息。数据包括了全球各个国家和地区的农业统计数据,旨在为政策制定者、研究人员和公众提供全面的农业信息。

www.fao.org 收录

IRSTD-1k

最大的逼真红外小目标检测数据集,由1,001个手动标记的逼真图像组成,这些图像具有各种目标形状,不同的目标大小以及来自不同场景的丰富杂波背景。

OpenDataLab 收录