five

Data from: Elevated salinity blocks pathogen transmission and improves host survival for a globally pandemic disease: implications for amphibian translocations|疾病研究数据集|两栖动物保护数据集

收藏
DataONE2017-11-03 更新2024-06-26 收录
疾病研究
两栖动物保护
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
1. Emerging infectious diseases are one of the greatest threats to global biodiversity. Chytridiomycosis in amphibians is perhaps the most extreme example of this phenomenon known to science. Translocations are increasingly used to fight disease-induced extinctions. However, many programs fail because disease is still present or subsequently establishes in the translocation environment. There is a need for studies in real-world scenarios to test whether environmental manipulation could improve survival in populations by generating unfavourable environmental conditions for pathogens. Reintroductions of amphibians impacted by chytridiomycosis into environments where the disease persists provide a scenario where this paradigm can be tested. 2. We tested the hypothesis that manipulating environmental salinity in outdoor mesocosms under near identical environmental conditions applying in a nearby translocation program for an endangered amphibian, would improve survival and determine the mechanisms involved. 160 infected and 288 uninfected, captive-bred, juvenile frogs were released into 16 outdoor mesocosms in which salinity was controlled (high or low salinity treatment). The experiment was run for 25 weeks from the mid-austral winter to the mid-austral summer of 2013 in a temperate coastal environment, Australia. 3. Increasing salinity from ca. 0.5 ppt to 3.5 - 4.5 ppt reduced pathogen transmission between infected and uninfected animals, resulting in significantly reduced mortality in elevated salt mesocosms (0.13, high salt versus 0.23, low salt survival at 23 weeks). Increasing water temperature associated with season (from mean 13oC to 25oC) eventually cleared all surviving animals of the pathogen. 4. Synthesis and applications. We identified a mechanism by which environmental salinity can protect amphibian hosts from chytridomycosis by reducing disease transmission rates and conclude that manipulating environmental salinity in landscapes where chytrid-affected amphibians are currently translocated could improve the probability of population persistence for hundreds of species. More broadly, we provide support for the paradigm that environmental manipulation can be used to mitigate the impact of emerging infectious diseases.18-Sep-2017
创建时间:
2017-11-03
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

ERIC (Education Resources Information Center)

ERIC (Education Resources Information Center) 是一个广泛的教育文献数据库,包含超过130万条记录,涵盖从1966年至今的教育研究、政策和实践。数据集内容包括教育相关的期刊文章、书籍、研究报告、会议论文、技术报告、政策文件等。

eric.ed.gov 收录

Allen Brain Atlas

Allen Brain Atlas 是一个综合性的脑图谱数据库,提供了详细的大脑解剖结构、基因表达数据、神经元连接信息等。该数据集包括了小鼠、人类和其他模式生物的大脑数据,旨在帮助研究人员理解大脑的结构和功能。

portal.brain-map.org 收录

MVIP

MVIP是一个面向应用的多视角和多模态工业零件识别数据集,由弗劳恩霍夫IPK研究所创建。该数据集包含了校准过的RGBD多视角图像以及对象的物理属性、自然语言描述和超类别等信息。数据集共包含约570,000张图像,分为训练集、验证集和测试集,适用于工业零件识别相关的研究,旨在解决小样本学习、视觉相似零件识别等问题。

arXiv 收录

SeaDronesSee

SeaDronesSee是由德国图宾根大学认知系统组创建的大型视觉对象检测和跟踪基准,专注于海洋环境中的人类检测。该数据集包含超过54,000帧,总计400,000个实例,从不同高度和视角(5至260米,0至90度)捕获,并提供详细的元信息。数据集的创建旨在填补陆基视觉系统与海基系统之间的差距,特别适用于无人机辅助的海上搜救任务。SeaDronesSee通过提供精确的元数据,如高度、视角和速度,支持多模态系统的开发,以提高检测的准确性和速度。此外,数据集还包括多光谱图像,利用非可见光谱(如近红外和红边光谱)来增强人类检测能力。

arXiv 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录