一般公共预算支出表(按功能科目)|政府财政数据集|预算分析数据集
收藏开源公平性干预数据集
开源公平性干预数据集由乔治梅森大学计算机科学系的研究团队创建,包含62个开源公平性干预项目。该数据集旨在帮助研究人员和从业者更好地理解和使用公平性干预工具,以提高机器学习模型的公平性。数据集涵盖了广泛的公平性干预工具,包括工具、工具包、库和框架等。该数据集的创建过程包括从GitHub上搜索和筛选公平性干预项目,并分析其可用性、兼容性、算法覆盖范围、区分因素和机器学习生命周期支持等方面。该数据集的应用领域包括医疗保健、金融和教育等领域,旨在解决机器学习模型中的偏见问题,促进公平和道德的决策。
arXiv 收录
Hospital Deterioration Dataset
这是一个高保真模拟医院队列数据集,包含10,000个模拟医院入院记录,每个记录跟踪最多72小时。数据集提供每小时的生命体征(心率、血压、呼吸频率等)和实验室数值(白细胞计数、乳酸、肌酐等),以及患者人口统计学信息和多种恶化结果标签。专门设计用于构建和基准测试早期预警系统和临床恶化风险模型的机器学习应用。
github 收录
TPTP
TPTP(Thousands of Problems for Theorem Provers)是一个包含大量逻辑问题的数据集,主要用于定理证明器的测试和评估。它包含了多种逻辑形式的问题,如一阶逻辑、高阶逻辑、命题逻辑等。
www.tptp.org 收录
中国交通事故深度调查(CIDAS)数据集
交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、
北方大数据交易中心 收录
中国逐日格点降水数据集V2(1960–2024,0.1°)
CHM_PRE V2数据集是一套高精度的中国大陆逐日格点降水数据集。该数据集基于1960年至今共3476个观测站的长期日降水观测数据,并纳入11个降水相关变量,用于表征降水的相关性。数据集采用改进的反距离加权方法,并结合基于机器学习的LGBM算法构建。CHM_PRE V2与现有的格点降水数据集(包括CHM_PRE V1、GSMaP、IMERG、PERSIANN-CDR和GLDAS)表现出良好的时空一致性。数据集基于63,397个高密度自动雨量站2015–2019年的观测数据进行验证,发现该数据集显著提高了降水测量精度,降低了降水事件的高估,为水文建模和气候评估提供了可靠的基础。CHM_PRE V2 数据集提供分辨率为0.1°的逐日降水数据,覆盖整个中国大陆(18°N–54°N,72°E–136°E)。该数据集涵盖1960–2024年,并将每年持续更新。日值数据以NetCDF格式提供,为了方便用户,我们还提供NetCDF和GeoTIFF格式的年度和月度总降水数据。
国家青藏高原科学数据中心 收录
