five

EA-PN-TEC: EEG Evoked activity and psychoacoustic monitoring of pink noise exposure|脑电图研究数据集|心理声学监测数据集

收藏
Mendeley Data2024-03-27 更新2024-06-27 收录
脑电图研究
心理声学监测
下载链接:
https://data.mendeley.com/datasets/63m5gy9n5h
下载链接
链接失效反馈
资源简介:
Context Before being interpreted by the human brain, sound is affected by many physical factors, particularly the response of audio systems such as headphones which are variables that are not considered in many studies concerning acoustic therapies. Objective To identify changes in electroencephalographic (EEG) transient neural and psychoacoustic responses due to long-term exposure to pink noise, altered by the frequency responses of three headphone models. Design Data is a continuation of the study in "Related links". The EEG activity of participants was recorded while performing a five-alternative forced-choice psychoacoustic discrimination test on a computer before and 30 days after exposure to pink noise. The psychoacoustic test consisted of listening to a combination of three modified pink noise sounds according to headphone models: ATVIO, SHURE and APPLE. Afterward, participants were assigned to a headphone group and underwent a period of daily exposure for 20 minutes listening to pink noise according to the headphone model. Finally, participants were scheduled for a final recording session following the same procedure as the previous one. Content EEG data in GDF format of 24 individuals answering a forced-choice psychoacoustic test in two sessions. Data is divided into three groups: ATVIO (7 files), SHURE (10 files), and APPLE (7 files). Sample rate: 250 Hz. An excel spreadsheet named Answers_RT with the answers and reaction times (RT) per question and participant is provided for each session. Answers_RT worksheets: -info: explanation of sound scenarios. -Answers S1: Answers for the first EEG recording session. The first row shows the ID of every participant. Rows 2-37 have the individual answers for each scenario of the experimental paradigm. Correct answers are coded as 1, incorrect answers as 0, and nan shows questions without answers. Row 38 has the total correct answers per participant. The maximum score is 36. -Answers SF: It has the same structure as S1. The only difference is that the results correspond to the last session. -Reaction times S1 and SF: Same structure as Answers S1 and SF. The values on rows 2-37 correspond to the individual reaction times to the scenarios. Values are in seconds. Participants.txt: Text file with ID of recordings, heart rate, sex of subjects and groups. Stimulation_codes.txt: Text file with stimulation codes registered in GDF files. Codes refer to 1) instructions before listening to sounds, 2) play and stop of sounds (ATVIO, SHURE, and APPLE), 3) questions, and 4) answers. Instruments: Folder containing sounds used to explain psychoacoustic concepts and relate them to physical acoustic features. Channels.txt: Text file providing the name of the electrodes and the position in theta/phi-coordinates (second and third column, respectively).
创建时间:
2024-01-23
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

中国近海台风路径集合数据集(1945-2024)

1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。 数据源为获取温州台风网(http://www.wztf121.com/)的真实观测路径数据,经过处理整合后形成文件,如使用csv文件需使用文本编辑器打开浏览,否则会出现乱码,如要使用excel查看数据,请使用xlsx的格式。

国家海洋科学数据中心 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

RDD2022

RDD2022是一个多国图像数据集,用于自动道路损伤检测,由印度理工学院罗凯里分校交通系统中心等机构创建。该数据集包含来自六个国家的47,420张道路图像,标注了超过55,000个道路损伤实例。数据集通过智能手机和高分辨率相机等设备采集,旨在通过深度学习方法自动检测和分类道路损伤。RDD2022数据集的应用领域包括道路状况的自动监测和计算机视觉算法的性能基准测试,特别关注于解决多国道路损伤检测的问题。

arXiv 收录