five

Butcher's bill, UT 1599-9|古代历史数据集|考古学数据集

收藏
Mendeley Data2024-06-12 更新2024-06-28 收录
古代历史
考古学
下载链接:
https://digitallibrary.usc.edu/asset-management/2A3BF1RSO7HCU
下载链接
链接失效反馈
资源简介:
[Text Description:] Butcher's bill: sheep, lamb. ❧ [Text or Publication Number Note:] UT 1599-9 ❧ [Excavation Description:] Drehem ❧ [Medium:] Clay ❧ [Script Note:] Cuneiform, Non-Alphabetic ❧ [Physical Object Description:] Small clay tablet, pink-orange color. LABEL: "1599" in black ink, "9" + underscore in red ink. 2 x 2.5cm. ❧ [Physical Object Note:] Reign of Shulgi, second dynastic king.
创建时间:
2024-06-08
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

GPQA

GPQA是一个由生物学、物理学和化学领域的专家编写的448个多选题数据集。该数据集的特点是问题质量高且极其困难,即使是具有博士学位或在读博士的专家也仅能达到65%的准确率,而高技能的非专家验证者仅有34%的准确率。数据集旨在用于研究未来AI系统在帮助解答非常困难问题时的可扩展监督方法,特别是在开发新科学知识时。

arXiv 收录

Stanford Cars

Cars数据集包含196类汽车的16,185图像。数据被分成8,144训练图像和8,041测试图像,其中每个类被大致分成50-50。类别通常在品牌,型号,年份,例如2012特斯拉Model S或2012 BMW M3 coupe的级别。

OpenDataLab 收录

UAVDT Dataset

The authors constructed a new UAVDT Dataset focused on complex scenarios with new level challenges. Selected from 10 hours raw videos, about 80, 000 representative frames are fully annotated with bounding boxes as well as up to 14 kinds of attributes (e.g., weather condition, flying altitude, camera view, vehicle category, and occlusion) for three fundamental computer vision tasks: object detection, single object tracking, and multiple object tracking.

datasetninja.com 收录

FACED

FACED数据集是由清华大学脑与智能实验室和智能技术与系统国家重点实验室共同创建,包含从123名参与者收集的32通道EEG信号,用于情感计算研究。数据集通过记录参与者观看28个情感诱发视频片段时的EEG信号构建,旨在通过EEG信号分析情感状态。创建过程中,数据经过标准化和统一预处理,设计了四个EEG分类任务。该数据集主要应用于情感识别和脑机接口领域,旨在解决情感计算中的分类问题,提高情感识别的准确性和效率。

arXiv 收录