five

Data from: Contrasting ecological roles of non-native ungulates in a novel ecosystem|生态系统管理数据集|非本地物种数据集

收藏
DataONE2017-10-30 更新2024-06-26 收录
生态系统管理
非本地物种
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Conservation has long focused on preserving or restoring pristine ecosystems. However, understanding and managing novel ecosystems has grown in importance as they outnumber pristine ecosystems worldwide. While non-native species may be neutral or detrimental in pristine ecosystems, it is possible that even notorious invaders could play beneficial or mixed roles in novel ecosystems. We examined the effects of two long-established non-native species – Philippine deer (Rusa marianna) and feral pigs (Sus scrofa) – in Guam, Micronesia, where native vertebrate frugivores are functionally absent leaving forests devoid of seed dispersers. We compared the roles of deer and pigs on seedling survival, seed dispersal, and plant community structure in limestone karst forests. Deer, even at low abundances, had pronounced negative impacts on forest communities by decreasing seedling and vine abundance. In contrast, pigs showed no such relationship, and more seeds were found in pig scats than deer scats, suggesting that pigs provide an ecosystem function – seed dispersal – that has been lost from Guam. Our study presents a surprising discrepancy between the roles of two non-native species that are traditionally managed as a single entity, suggesting that ecological function, rather than identity as a non-native, may be more important to consider in managing novel systems.
创建时间:
2017-10-30
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

ShapeNet

ShapeNet 是由斯坦福大学、普林斯顿大学和美国芝加哥丰田技术研究所的研究人员开发的大型 3D CAD 模型存储库。该存储库包含超过 3 亿个模型,其中 220,000 个模型被分类为使用 WordNet 上位词-下位词关系排列的 3,135 个类。 ShapeNet Parts 子集包含 31,693 个网格,分为 16 个常见对象类(即桌子、椅子、平面等)。每个形状基本事实包含 2-5 个部分(总共 50 个部分类)。

OpenDataLab 收录

RDD2022

RDD2022是一个多国图像数据集,用于自动道路损伤检测,由印度理工学院罗凯里分校交通系统中心等机构创建。该数据集包含来自六个国家的47,420张道路图像,标注了超过55,000个道路损伤实例。数据集通过智能手机和高分辨率相机等设备采集,旨在通过深度学习方法自动检测和分类道路损伤。RDD2022数据集的应用领域包括道路状况的自动监测和计算机视觉算法的性能基准测试,特别关注于解决多国道路损伤检测的问题。

arXiv 收录

AIS数据集

该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。

github 收录

AFD-dataset

我们创建了迄今为止最大的亚洲人脸数据集,包含360,000张人脸图片,涉及2019个人。相比之下,第二大的亚洲人脸数据集CASIA-FaceV5仅包括2500张图片和500个人。

github 收录

XS-Video

XS-Video数据集是由中国科学院自动化研究所MAIS实验室提出的一个大规模现实世界短视频传播数据集。该数据集收集了来自中国五大平台(抖音、快手、西瓜视频、今日头条、哔哩哔哩)的117720个短视频,包含381926个样本和535个话题,覆盖了从发布后的互动信息,如观看、点赞、分享、收藏、粉丝和评论等。数据集通过跨平台指标对齐方法,对视频的长期传播影响力进行评分,分为0到9级,旨在为短视频传播研究提供全面的互动信息和内容特征。

arXiv 收录