five

Initial Results of the relative humidity observations by MEDA instrument onboard the Mars 2020 peseverance Rover|火星科学数据集|大气观测数据集

收藏
Mendeley Data2024-05-10 更新2024-06-30 收录
火星科学
大气观测
下载链接:
http://dataverse.jpl.nasa.gov/citation?persistentId=doi:10.48577/jpl.2LWKL8
下载链接
链接失效反馈
资源简介:
Abstract 26 Mars 2020 mission rover “Perseverance”, launched 30th Jul. 2020 by NASA, landed suc- 27 cessfully 18th Feb. 2021 at Jezero Crater, Mars (Lon. E 77.4509° Lat. N 18.4446°). Land- 28 ing season was at Mars solar longitude Ls = 5.2°, close to start of the northern spring. 29 Perseverance’s payload includes the relative humidity sensor MEDA-HS, which opera- 30 tions, performance, and the first observations from sol 80 to sol 410 (Ls 44°- 210°) of Per- 31 severance’s operations we describe. MEDA-HS output is reliable above 2% relative hu- 32 midity readings (referenced to sensor temperature), thus the sensor output is useful at 33 local night from late night hours to few tens of minutes after sunrise. Data delivered to 34 the Planetary Data System (PDS) includes also absolute humidity in volume mixing ra- 35 tio (VMR), VMR is calculated using the MEDA-PS pressure sensor values. According 36 to observations, nighttime absolute humidity follows a seasonal curve in which release 37 of water vapor from the northern cap with advancing northern spring and summer is vis- 38 ible. The sensor relative humidity output is transferred to air relative humidity values. 39 At ground level, frost conditions may have been reached a few times. Nocturnal volume 40 mixing ratio values show a declining trend suggesting adsorption of humidity into the 41 ground. Observations are compared with an adsorptive single column model, which com- 42 plies with observations. The model allows estimating daytime VMR levels. Short term 43 sub-hour time scales show large temporal fluctuations in humidity, which suggest ver- 44 tical and spatial advection. 45 Plain Language Summary 46 Mars 2020 mission rover ”Perseverance” landed successfully 18th Feb. 2021 at Jezero 47 Crater, Mars. The rover’s payload includes a versatile instrument suite called MEDA. 48 One of the MEDA instruments is a relative humidity sensor, which observations for the 49 first 410 martian days are described here. Sensor operations and accuracy estimates are 50 presented. Relative humidity together with MEDA pressure and air temperature obser- 51 vations allow calculating absolute water vapor content of air at the sensor level at night- 52 time. Humidity observations are also compared with models describing water vapor ad- 53 sorption and desorption into and out from soil. The results show how atmospheric hu- 54 midity at the rover’s site experience large subhour variability. Humidity observations help 55 to understand interchange of humidity between the soil and the atmosphere. Water is 56 mandatory for life such as in earth, thus understanding these water cycle processes bet- 57 ter are important for evaluating possibilities of past and current habitability of Mars. 58 Perseverance is also collecting samples which maybe returned to Earth one day. Knowl- 59 edge of the conditions at the times when samples were collected maybe useful. 60 1 Introduction 61 The Mars 2020 mission rover “Perseverance,” launched 30th July 2020 by NASA, 62 landed successfully 18th Feb. 2021 at Jezero Crater, Mars (Lon. E 77.4509°, Lat. N 18.4446°) 63 at solar longitude Ls = 5.2°. Jezero is a 45-km wide impact crater located in the Nili Fos- 64 sae region close to western edge of Isidis Planitia. It is thought that an ancient river flowed 65 into Jezero, forming a delta, flooding the crater and forming a lake, both of which have 66 dried out long ago (Mangold et al., 2021). 67 Perseverance’s science objectives include studying signatures of past habitability. 68 It will also collect and store a set of samples for possible recovery by a later mission. To 69 prepare for human exploration, environmental conditions are recorded by Perseverance’s 70 Mars Environmental Dynamics Analyzer (MEDA) instrument package, which is one of 71 the rover’s seven primary instruments. MEDA has a set of six sensors: Air Temperature 72 Sensor (ATS), Pressure Sensor (PS), Radiation and Dust Sensor (RDS), Relative Hu- 73 midity Sensor (HS), Thermal Infrared Sensor (TIRS) and Wind Sensor (WS) (Rodriguez- 74 Manfredi et al., 2021). In addition to MEDA’s importance to future human exploration, –2– manuscript submitted to JGR: Planets 75 MEDA can be used to address environmental scientific goals, including understanding 76 the near-surface atmosphere and its relationship to the surface over which the rover is 77 driving. In this paper, we focus on the first results of the MEDA Relative Humidity Sen- 78 sor. 79 The Relative Humidity Sensor (MEDA-HS) is based on capacitive polymer sensors 80 developed by Vaisala Oyj. During the daytime, the relative humidity drops close to 0%, 81 below the accuracy of the sensor. 82 This paper describes the observations by MEDA-HS of the first 410 Sols of oper- 83 ations of the Perseverance Rover, MEDA-HS operational cycles, and the limitations of 84 the sensor as well as some initial interpretations of those results. Section 2 describes the 85 background of the MEDA-HS and water vapor in Martian atmosphere. Section 3 gives 86 a description of the sensor, section 4 describes how the MEDA-HS has been operated 87 onboard Perseverance, section 5 presents an overview of the observations, and section 88 6 presents comparisons between a column water model and the observations. Conclu- 89 sions and discussion are in Section 7.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域地面气象要素驱动数据集 v2.0(1951-2024)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。

国家青藏高原科学数据中心 收录

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

红外谱图数据库

收集整理红外谱图实验手册等数据,建成了红外谱图数据库。本数据库收录了常见化合物的红外谱图。主要包括化合物数据和对应的红外谱图数据。其中,原始红外谱图都进行了数字化处理,从而使谱峰检索成为可能。用户可以在数据库中检索指定化合物的谱图,也可以提交谱图/谱峰数据,以检索与之相似的谱图数据,以协助进行谱图鉴定。

国家基础学科公共科学数据中心 收录

MIDV-500

该数据集包含使用移动设备拍摄的不同文档图像,这些图像通常具有投影变形。数据集分为训练和测试两部分,其中训练部分包含30种文档类型,测试部分包含20种,在应用神经网络之前,所有图像都被缩放到统一的宽度,宽度为400像素。该数据集的任务是进行消失点检测。

arXiv 收录