five

Initial Results of the relative humidity observations by MEDA instrument onboard the Mars 2020 peseverance Rover|火星科学数据集|大气观测数据集

收藏
Mendeley Data2024-05-10 更新2024-06-30 收录
火星科学
大气观测
下载链接:
http://dataverse.jpl.nasa.gov/citation?persistentId=doi:10.48577/jpl.2LWKL8
下载链接
链接失效反馈
资源简介:
Abstract 26 Mars 2020 mission rover “Perseverance”, launched 30th Jul. 2020 by NASA, landed suc- 27 cessfully 18th Feb. 2021 at Jezero Crater, Mars (Lon. E 77.4509° Lat. N 18.4446°). Land- 28 ing season was at Mars solar longitude Ls = 5.2°, close to start of the northern spring. 29 Perseverance’s payload includes the relative humidity sensor MEDA-HS, which opera- 30 tions, performance, and the first observations from sol 80 to sol 410 (Ls 44°- 210°) of Per- 31 severance’s operations we describe. MEDA-HS output is reliable above 2% relative hu- 32 midity readings (referenced to sensor temperature), thus the sensor output is useful at 33 local night from late night hours to few tens of minutes after sunrise. Data delivered to 34 the Planetary Data System (PDS) includes also absolute humidity in volume mixing ra- 35 tio (VMR), VMR is calculated using the MEDA-PS pressure sensor values. According 36 to observations, nighttime absolute humidity follows a seasonal curve in which release 37 of water vapor from the northern cap with advancing northern spring and summer is vis- 38 ible. The sensor relative humidity output is transferred to air relative humidity values. 39 At ground level, frost conditions may have been reached a few times. Nocturnal volume 40 mixing ratio values show a declining trend suggesting adsorption of humidity into the 41 ground. Observations are compared with an adsorptive single column model, which com- 42 plies with observations. The model allows estimating daytime VMR levels. Short term 43 sub-hour time scales show large temporal fluctuations in humidity, which suggest ver- 44 tical and spatial advection. 45 Plain Language Summary 46 Mars 2020 mission rover ”Perseverance” landed successfully 18th Feb. 2021 at Jezero 47 Crater, Mars. The rover’s payload includes a versatile instrument suite called MEDA. 48 One of the MEDA instruments is a relative humidity sensor, which observations for the 49 first 410 martian days are described here. Sensor operations and accuracy estimates are 50 presented. Relative humidity together with MEDA pressure and air temperature obser- 51 vations allow calculating absolute water vapor content of air at the sensor level at night- 52 time. Humidity observations are also compared with models describing water vapor ad- 53 sorption and desorption into and out from soil. The results show how atmospheric hu- 54 midity at the rover’s site experience large subhour variability. Humidity observations help 55 to understand interchange of humidity between the soil and the atmosphere. Water is 56 mandatory for life such as in earth, thus understanding these water cycle processes bet- 57 ter are important for evaluating possibilities of past and current habitability of Mars. 58 Perseverance is also collecting samples which maybe returned to Earth one day. Knowl- 59 edge of the conditions at the times when samples were collected maybe useful. 60 1 Introduction 61 The Mars 2020 mission rover “Perseverance,” launched 30th July 2020 by NASA, 62 landed successfully 18th Feb. 2021 at Jezero Crater, Mars (Lon. E 77.4509°, Lat. N 18.4446°) 63 at solar longitude Ls = 5.2°. Jezero is a 45-km wide impact crater located in the Nili Fos- 64 sae region close to western edge of Isidis Planitia. It is thought that an ancient river flowed 65 into Jezero, forming a delta, flooding the crater and forming a lake, both of which have 66 dried out long ago (Mangold et al., 2021). 67 Perseverance’s science objectives include studying signatures of past habitability. 68 It will also collect and store a set of samples for possible recovery by a later mission. To 69 prepare for human exploration, environmental conditions are recorded by Perseverance’s 70 Mars Environmental Dynamics Analyzer (MEDA) instrument package, which is one of 71 the rover’s seven primary instruments. MEDA has a set of six sensors: Air Temperature 72 Sensor (ATS), Pressure Sensor (PS), Radiation and Dust Sensor (RDS), Relative Hu- 73 midity Sensor (HS), Thermal Infrared Sensor (TIRS) and Wind Sensor (WS) (Rodriguez- 74 Manfredi et al., 2021). In addition to MEDA’s importance to future human exploration, –2– manuscript submitted to JGR: Planets 75 MEDA can be used to address environmental scientific goals, including understanding 76 the near-surface atmosphere and its relationship to the surface over which the rover is 77 driving. In this paper, we focus on the first results of the MEDA Relative Humidity Sen- 78 sor. 79 The Relative Humidity Sensor (MEDA-HS) is based on capacitive polymer sensors 80 developed by Vaisala Oyj. During the daytime, the relative humidity drops close to 0%, 81 below the accuracy of the sensor. 82 This paper describes the observations by MEDA-HS of the first 410 Sols of oper- 83 ations of the Perseverance Rover, MEDA-HS operational cycles, and the limitations of 84 the sensor as well as some initial interpretations of those results. Section 2 describes the 85 background of the MEDA-HS and water vapor in Martian atmosphere. Section 3 gives 86 a description of the sensor, section 4 describes how the MEDA-HS has been operated 87 onboard Perseverance, section 5 presents an overview of the observations, and section 88 6 presents comparisons between a column water model and the observations. Conclu- 89 sions and discussion are in Section 7.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

CHARLS

中国健康与养老追踪调查(CHARLS)数据集,旨在收集反映中国45岁及以上中老年人家庭和个人的高质量微观数据,用以分析人口老龄化问题,内容包括健康状况、经济状况、家庭结构和社会支持等。

charls.pku.edu.cn 收录

PCLT20K

PCLT20K数据集是由湖南大学等机构创建的一个大规模PET-CT肺癌肿瘤分割数据集,包含来自605名患者的21,930对PET-CT图像,所有图像都带有高质量的像素级肿瘤区域标注。该数据集旨在促进医学图像分割研究,特别是在PET-CT图像中肺癌肿瘤的分割任务。

arXiv 收录

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

China License Plate Dataset

该数据集包含从互联网搜索、手机拍摄或车载记录仪捕获的多种真实场景下的车牌图像。数据集涵盖了不同拍摄角度、时间、分辨率和背景条件,包括多种车辆类型如卡车、轿车、警车和新能源车辆。新能源车辆车牌有八个字母,其他车辆车牌有七个字母,允许部分遮挡的车牌。所有图像均手动标注了边界框和车牌字母。数据集包含来自中国大陆31个省份的1200张车牌图像。

github 收录