five

awesome-public-datasets|公共数据集数据集|多领域数据集

收藏
github2016-12-18 更新2024-05-31 收录
下载链接:
https://github.com/Korbol69/awesome-public-datasets
下载链接
链接失效反馈
资源简介:
这是一个收集和整理自互联网上的大规模公共数据集的列表,数据集涵盖气候、经济、能源、金融、生物、农业、物理、医疗健康和地理空间等多个领域。

This is a list of large-scale public datasets collected and organized from the internet, covering multiple fields such as climate, economy, energy, finance, biology, agriculture, physics, healthcare, and geospatial data.
创建时间:
2014-12-13
原始信息汇总

数据集概述

气候/天气

  • Australian Weather: http://www.bom.gov.au/climate/dwo/
  • Canadian Meteorological Centre: https://weather.gc.ca/grib/index_e.html
  • Climate Data: http://www.cru.uea.ac.uk/cru/data/temperature/#datter and ftp://ftp.cmdl.noaa.gov/
  • Global Climate Data Since 1929: http://www.tutiempo.net/en/Climate
  • NOAA Bering Sea Climate: http://www.beringclimate.noaa.gov/
  • NOAA Climate Datasets: http://ncdc.noaa.gov/data-access/quick-links
  • NOAA Realtime Weather Models: http://www.ncdc.noaa.gov/data-access/model-data/model-datasets/numerical-weather-prediction
  • WU Historical Weather Worldwide: http://www.wunderground.com/history/index.html

经济学

  • American Economic Ass. (AEA): http://www.aeaweb.org/RFE/toc.php?show=complete
  • EconData (UMD): http://inforumweb.umd.edu/econdata/econdata.html
  • Internet Product Code Database: http://www.upcdatabase.com/
  • World bank: http://data.worldbank.org/indicator

能源

  • AMPds: http://ampds.org/
  • BLUEd: http://nilm.cmubi.org/
  • COMBED: http://combed.github.io/
  • Dataport: https://dataport.pecanstreet.org/
  • ECO: http://www.vs.inf.ethz.ch/res/show.html?what=eco-data
  • EIA: http://www.eia.gov/electricity/data/eia923/
  • iAWE: http://iawe.github.io/
  • HFED: http://hfed.github.io/
  • Plaid: http://plaidplug.com/
  • REDD: http://redd.csail.mit.edu/
  • UK-Dale: http://www.doc.ic.ac.uk/~dk3810/data/

金融

  • CBOE Futures Exchange: http://cfe.cboe.com/Data/
  • Google Finance: https://www.google.com/finance
  • Google Trends: http://www.google.com/trends?q=google&ctab=0&geo=all&date=all&sort=0
  • NASDAQ: https://data.nasdaq.com/
  • OANDA: http://www.oanda.com/
  • OSU Financial data: http://fisher.osu.edu/fin/osudata.htm or http://fisher.osu.edu/fin/fdf/osudata.htm
  • Quandl: http://www.quandl.com/
  • St Louis Federal: http://research.stlouisfed.org/fred2/
  • Yahoo Finance: http://finance.yahoo.com/

生物学

  • CRCNS: http://crcns.org/data-sets
  • Gene Expression Omnibus: http://www.ncbi.nlm.nih.gov/geo/
  • Human Microbiome Project: http://www.hmpdacc.org/reference_genomes/reference_genomes.php
  • MIT Cancer Genomics Data: http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi
  • NIH Microarray data: ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/series/GSE6532/
  • Protein structure: http://www.infobiotic.net/PSPbenchmarks/
  • Protein Data Bank: http://pdb.org/
  • Public Gene Data: http://www.pubgene.org/
  • Stanford Microarray Data: http://smd.stanford.edu/
  • UniGene: http://www.ncbi.nlm.nih.gov/unigene
  • The Personal Genome Project: http://www.personalgenomes.org/ or https://my.pgp-hms.org/public_genetic_data
  • 1000 Genomes: http://www.1000genomes.org/data
  • UCSC Public Data: http://hgdownload.soe.ucsc.edu/downloads.html

农业

  • U.S. Department of Agricultures PLANTS Database: http://www.plants.usda.gov/dl_all.html

物理学

  • NASA: http://nssdc.gsfc.nasa.gov/nssdc/obtaining_data.html
  • CERN Open Data Portal: http://opendata.cern.ch/

医疗保健

  • EHDP Large Health Data Sets: http://www.ehdp.com/vitalnet/datasets.htm
  • Gapminder: http://www.gapminder.org/data/
  • Medicare Data File: http://go.cms.gov/19xxPN4

GeoSpace/GIS

  • EOSDIS: http://sedac.ciesin.columbia.edu/data/sets/browse
  • Factual Global Location Data: http://www.factual.com/
  • Geo Spatial Data: http://geodacenter.asu.edu/datalist/
  • OpenStreetMap (a free map worldwide): http://wiki.openstreetmap.org/wiki/Downloading_data
  • GeoNames (over eight million placenames): http://www.geonames.org/
  • BODC (marine data of nearly 22,000 oceanographic vars): http://www.bodc.ac.uk/data/where_to_find_data/
  • GADM (Global Administrative Areas database): http://www.gadm.org/
  • twofishes (Foursquares coarse geocoder): https://github.com/foursquare/twofishes
  • Natural Earth (vectors and rasters of the world): http://www.naturalearthdata.com/
  • tz_world (timezone polygons): http://efele.net/maps/tz/world/
  • TIGER/Line (official United States boundaries and roads): http://www.census.gov/geo/maps-data/data/tiger-line.html

交通运输

  • Airlines Data (2009 ASA Challenge): http://stat-computing.org/dataexpo/2009/the-data.html
  • Bike Share Data Systems: https://github.com/BetaNYC/Bike-Share-Data-Best-Practices/wiki/Bike-Share-Data-Systems
  • Edge data for US domestic flights 1990 to 2009: http://data.memect.com/?p=229
  • Half a million Hubway rides: http://hubwaydatachallenge.org/trip-history-data/
  • NYC Taxi Trip Data 2013 (FOIA/FOIL): https://archive.org/details/nycTaxiTripData2013
  • OpenFlights (airport, airline and route data): http://openflights.org/data.html
  • RITA Airline On-Time Performance Data: http://www.transtats.bts.gov/Tables.asp?DB_ID=120
  • RITA transport data collection: http://www.transtats.bts.gov/DataIndex.asp
  • Transport for London: http://www.tfl.gov.uk/info-for/open-data-users/our-feeds
  • U.S. Freight Analysis Framework: http://ops.fhwa.dot.gov/freight/freight_analysis/faf/index.htm
  • Marine Traffic - ship tracks, port calls and more: https://www.marinetraffic.com/de/p/api-services

政府

  • Archive-it: https://www.archive-it.org/explore?show=Collections
  • Australia: https://data.gov.au/
  • Australia: http://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3301.02009?OpenDocument
  • Canada: http://www.data.gc.ca/default.asp?lang=En&n=5BCD274E-1
  • Chicago: https://data.cityofchicago.org/
  • FDA: https://open.fda.gov/index.html
  • Fed Stats: http://www.fedstats.gov/cgi-bin/A2Z.cgi
  • Guardian world governments: http://www.guardian.co.uk/world-government-data
  • HUD: http://www.huduser.org/portal/datasets/pdrdatas.html
  • London Datastore, U.K: http://data.london.gov.uk/dataset
  • Glasgow, Scotland, UK: http://data.glasgow.gov.uk/
  • Netherlands: https://data.overheid.nl/
  • New Zealand: http://www.stats.govt.nz/browse_for_stats.aspx
  • NYC betanyc: http://betanyc.us/
  • NYC Open Data: http://nycplatform.socrata.com/
  • OECD: http://www.oecd.org/document/0,3746,en_2649_201185_46462759_1_1_1_1,00.html
  • RITA: http://www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp
  • San Francisco Data sets: http://datasf.org/
  • The World Bank: http://wdronline.worldbank.org/
  • U.K. Government Data: http://data.gov.uk/data
  • U.S. Census Bureau: http://www.census.gov/data.html
  • U.S. American Community Survey: http://www.census.gov/acs/www/data_documentation/data_release_info/
  • U.S. Federal Government Agencies: http://www.data.gov/metric
  • U.S. Federal Government Data Catalog: http://catalog.data.gov/dataset
  • U.S. Open Government: http://www.data.gov/open-gov/
  • UK 2011 Census Open Atlas Project: http://www.alex-singleton.com/2011-census-open-atlas-project/
  • United Nations: http://data.un.org/
  • US CDC Public Health datasets: http://www.cdc.gov/nchs/data_access/ftp_data.htm
  • Open Government Data (OGD) Platform India: http://www.data.gov.in/

体育

  • Cricsheet (cricket): http://cricsheet.org/
  • Betfair (betting exchange) Event Results: http://data.betfair.com/
  • Lahmans Baseball Database: http://www.seanlahman.com/baseball-archive/statistics/
  • Retrosheet (baseball): http://www.retrosheet.org/game.htm
  • Ergast Formula 1 (API available): http://ergast.com/mrd/db

数据挑战

  • Challenges in Machine Learning: http://www.chalearn.org/
  • DrivenData Competitions for Social Good: http://www.drivendata.org/
  • ICWSM Data Challenge (since 2009): http://icwsm.cs.umbc.edu/
  • Kaggle Competition Data: http://www.kaggle.com/
  • KDD Cup by Tencent 2012: https://www.kddcup2012.org/
  • Netflix Prize: http://www.netflixprize.com/leaderboard
  • Yelp Dataset Challenge: http://www.yelp.com/dataset_challenge

机器学习

  • eBay Online Auctions: http://www.modelingonlineauctions.com/datasets
  • IMDb database: http://www.imdb.com/interfaces
  • Keel Repository: http://sci2s.ugr.es/keel/datasets.php
  • Lending Club Loan Data: https://www.lendingclub.com/info/download-data.action
  • Machine Learning Data Set Repository: http://mldata.org/
  • Million Song Dataset: http://blog.echonest.com/post/3639160982/million-song-dataset
  • More Song Datasets: http://labrosa.ee.columbia.edu/millionsong/pages/additional-datasets
  • MovieLens Data Sets: http://datahub.io/dataset/movielens
  • RDataMining R and Data Mining ebook data: http://www.rdatamining.com/data
  • Registered meteorites on Earth: http://www.analyticbridge.com/profiles/blogs/registered-meteorites-that-has-impacted-on-earth-visualized
  • SF restaurants dataset: http://missionlocal.org/san-francisco-restaurant-health-inspections/
  • UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/
  • University of Toronto Delve Datasets: http://www.cs.toronto.edu/~delve/data/datasets.html
  • Yahoo Ratings and Classification Data: http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

自然语言

  • 40 Million Entities in Context: https://code.google.com/p/wiki-links/downloads/list
  • ClueWeb09 FACC: http://lemurproject.org/clueweb09/FACC1/
  • ClueWeb12 FACC: http://lemurproject.org/clueweb12/FACC1/
  • Flickr personal taxonomies: http://www.isi.edu/natural-language/download/flickr/flickr_taxonomies.html
  • Google Books Ngrams: http://aws.amazon.com/datasets/8172056142375670
  • Google Web 5gram, 2006 (1T): https://catalog.ldc.upenn.edu/LDC2006T13
  • Gutenberg eBooks List: http://www.gutenberg.org/wiki/Gutenberg:Offline_Catalogs
  • Hansards: http://www.isi.edu/natural-language/download/hansard/
  • Machine Translation: http://statmt.org/wmt11/translation-task.html#download
  • SMS Spam Collection: http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
  • USENET corpus: http://www.psych.ualberta.ca/~westburylab/downloads/usenetcorpus.download.html
  • WordNet: http://wordnet.princeton.edu/wordnet/download/

图像处理

  • 2GB of photos of cats: http://137.189.35.203/WebUI/CatDatabase/catData.html
  • Face Recognition Benchmark: http://www.face-rec.org/databases/
  • ImageNet: http://www.image-net.org/

时间序列

  • Time Series data Library: https://datamarket.com/data/list/?q=provider:tsdl
  • UC Riverside Time Series: http://www.cs.ucr.edu/~eamonn/time_series_data/

社会科学

  • China Hotel Checkin/out data: http://www.360doc.com/content/13/1105/13/7863900_326788919.shtml
  • CMU Enron Email: http://www.cs.cmu.edu/~enron/
  • Facebook Social Networks (since 2007): http://law.di.unimi.it/datasets.php
  • Facebook100 (2005): https://archive.org/details/oxford-2005-facebook-matrix
  • Foursquare (2010,2011): http://www.public.asu.edu/~hgao16/dataset.html
  • Foursquare (UMN/Sarwat, 2013): https://archive.org/details/201309_foursquare_dataset_umn
  • General Social Survey (GSS): http://www3.norc.org/GSS+Website/
  • GetGlue (users rating TV shows): http://bit.ly/1aL8XS0
  • GitHub Archive: http://www.githubarchive.org/
  • ICPSR: http://www.icps
AI搜集汇总
数据集介绍
main_image_url
构建方式
本数据集通过从博客、回答和用户响应中收集和整理公共数据源而构建。数据集的构建主要依赖于网络上的公开资源,包括各种类型的数据库和开放数据平台。
特点
该数据集的特点在于其广泛性、多样性和开放性。它涵盖了气候、经济、能源、金融、生物学、农业、物理、健康、地理信息系统、交通、政府、体育、机器学习等多个领域,几乎包含了所有类型的公共数据集,且大部分数据集可以免费获取。
使用方法
用户可以通过数据集提供的链接直接访问和下载数据。每个数据集的获取方式可能不同,有些可能需要通过API访问,有些则可能需要直接下载文件。用户在使用前应先了解每个数据集的具体使用说明和条款。
背景与挑战
背景概述
‘awesome-public-datasets’是一个旨在收集和整理公共数据集的GitHub项目,创建于2015年,由Caesar0301维护。该项目搜集了来自博客、回答和用户响应的众多数据集,大多数数据集是免费的,但也包含一些收费数据集。该数据集列表的来源为https://github.com/caesar0301/awesome-public-datasets。该项目涵盖了气候、经济、能源、金融、生物学、农业、物理学、健康护理、地理信息系统、交通、政府、体育、机器学习、自然语言处理、图像处理、时间序列、社会科学、复杂网络、计算机网络、博物馆等多个领域的数据集,对相关研究人员和机构提供了极大的便利,推动了各领域的数据共享与利用。
当前挑战
尽管‘awesome-public-datasets’提供了丰富的数据资源,但在使用过程中也存在一些挑战。首先,数据集的多样性和来源的广泛性使得数据的质量参差不齐,对研究人员的筛选和清洗能力提出了较高的要求。其次,部分数据集可能存在版权或隐私问题,使用时需谨慎处理。此外,数据集的更新和维护也是一大挑战,随着数据量的增长和领域的不断发展,保持数据集的时效性和准确性需要持续的努力。
常用场景
经典使用场景
awesome-public-datasets数据集广泛收集了来自不同领域的公共数据集,其经典使用场景主要集中于学术研究和数据科学项目。研究者可以根据自身需求,从中选取相应的数据集进行数据分析、模型训练或作为学术研究的基础数据。
解决学术问题
该数据集解决了学术研究中数据获取的难题,尤其是在气候、经济、能源、金融、生物、农业、物理、健康医疗等多个领域。它为研究者提供了丰富的数据资源,有助于推动各学科的发展,提高研究的深度和广度。
衍生相关工作
基于该数据集,衍生出了大量相关的工作,包括学术论文、数据分析报告、商业智能应用等。这些工作不仅丰富了数据集的应用场景,也为数据科学领域的发展提供了实证基础和实践案例。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
5,000+
优质数据集
54 个
任务类型
进入经典数据集
二维码
社区交流群

面向社区/商业的数据集话题

二维码
科研交流群

面向高校/科研机构的开源数据集话题

数据驱动未来

携手共赢发展

商业合作