MOT15|多目标跟踪数据集|计算机视觉数据集
收藏
- MOT15数据集首次发布,作为多目标跟踪挑战(Multiple Object Tracking Challenge)的一部分,旨在提供一个标准化的基准测试平台,以评估和比较不同多目标跟踪算法的性能。
- MOT15数据集首次应用于学术研究,多个研究团队利用该数据集进行算法验证和性能评估,推动了多目标跟踪领域的发展。
- 随着MOT15数据集的广泛应用,相关研究成果在多个国际会议上发表,进一步提升了该数据集在学术界的影响力。
- MOT15数据集被纳入多个多目标跟踪算法的基准测试中,成为评估算法性能的重要参考数据集之一。
- MOT15数据集的扩展版本MOT16和MOT17发布,进一步丰富了多目标跟踪领域的数据资源,推动了该领域的技术进步。
- 1MOT15: A Benchmark for Multi-Object TrackingUniversity of Adelaide · 2015年
- 2Real-Time Multiple Object Tracking: A Study on the Importance of SpeedUniversity of Adelaide · 2017年
- 3Deep Learning in Video Multi-Object Tracking: A SurveyUniversity of Adelaide · 2019年
- 4A Comprehensive Evaluation of Deep Learning-Based Multi-Object Tracking on MOT15University of Adelaide · 2020年
- 5Towards Real-Time Multi-Object TrackingUniversity of Adelaide · 2019年
鸭绿江流域与水系 – 世界地理数据大百科辞条
鸭绿江流域是指鸭绿江干流和支流汇水区,地理位置为39°43′57″N-42°17′28″N,123°35′59″E-128°45′50″E。与其接壤的流域分别是辽河流域(东)、松花江流域(北)、图们江流域(北)、大同江流域(西南)等。鸭绿江流域界线在中国境内从长白山天池火山口的南壁起始,向西南经长白山脉、转向西南至千山山脉的北部,再折向南入海;在朝鲜境内,鸭绿江流域从长白山天池南坡启始向东南经过摩天岭山脉,在头流山(2309 m)转向西南方向的赴战岭山脉,在英雄里附近转向西,经狼林山(2184 m)、广城、松源,转向西南方向的狄逾岭山脉,接江南山脉的南部后至鸭绿江河口。鸭绿江流域面积65215.49 km²,其中,中国境内面积32799.22 km²,朝鲜境内面积32416.27 km²。鸭绿江是中(国)朝(鲜)界河,它起源于长白山天池火山口的南壁,向南经惠山(朝)、折向西经临江(中)、再转向西南直向丹东(中)、新义州(朝),最后在东港(中)和多狮里(朝)附近注入黄海的西朝鲜湾。鸭绿江干流长844.98 km,有几条比较大的支流汇入,包括在朝鲜境内的虛川江、長津江、厚州川、慈城江、禿魯江、忠满江和三桥川;在中国境内的浑江、蒲石河、瑗河等。鸭绿江干流沿中朝国界线自东北向西南流经吉林省的长白朝鲜族自治县、临江市、集安市;辽宁省的桓仁满族自治县、宽甸满族自治县、丹东市和东港市;朝鲜的两江道、慈江道和平安北道。鸭绿江流域地处暖温带湿润季风气候区。年降水量800-1200 mm。流域内多山,最高海拔2745 m,河道比降比较大,达到0.0032,其中在中段可达到0.01。丰富的降水补给和较大的河床比降,使得鸭绿江流域成为亚洲单位面积水资源和水利资源最丰富的流域之一。近80年来,流域内先后建造了水丰水库(中、朝)、渭源水库(中、朝)、铁甲水库(中)、太平哨水库(中)、桓仁水库(中)、回龙山水库(中)、满丰湖水库(朝)、版平里水库(朝)、时中湖水库(朝)、狼林湖水库(朝)、长津湖水库(朝)、赴战湖水库(朝)、丰西湖水库等(朝)。数据文件包括鸭绿江干流、鸭绿江水系和鸭绿江流域地理信息系统数据文件组成。数据集以.kmz 和.shp格式存储,数据量43.8 MB(压缩为20.1 MB)。
国家对地观测科学数据中心 收录
Wind Turbine Data
该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。
www.kaggle.com 收录
全球1km分辨率大气二氧化碳浓度数据集(2003-2023)
持续增加的人为CO₂排放导致了全球变暖和气候变化,进而引发了全球范围的重大环境、经济和健康损失,基于卫星遥感数据准确连续地监测大气CO₂变化对于理解全球碳循环、评估碳源和碳汇的分布以及制定有效的减排政策至关重要。大气CO2柱浓度(XCO2)指从地表到大气顶层干燥空气柱中CO2的平均体积比,是用来表征大气中CO2分子含量的物理量。当前已公开发表的全球无缝XCO2产品存在无法同时提供长时间跨度和高时空分辨率的问题,限制了其更为广泛的科学应用。本数据集基于来自SCIAMACHY、GOSAT 和 OCO-2 三颗卫星/传感器的XCO2观测数据进行二次研发,以卫星XCO2观测数据为训练标签,与 CO₂ 排放、吸收和传输相关的多源因素为解释变量,利用整合了U-Net网络和ConvLSTM网络的深度学习算法构建预测模型,生成了国际首套2003-2023年全球时空连续1公里分辨率逐日XCO2数据集。经全球27个TCCON地面观测站点的验证,结果表明该产品具有较好的精度(决定系数R2为0.989,均方根误差RMSE为1.021ppm)。本数据集为深化对全球碳循环的理解、评估减排政策以及应对气候变化挑战提供了重要的基础数据。
国家青藏高原科学数据中心 收录
LIDC-IDRI
LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。
OpenDataLab 收录
MAV-VID, Drone-vs-Bird, Anti-UAV
本研究涉及三个数据集:MAV-VID、Drone-vs-Bird和Anti-UAV,总计包含241个视频,共计331,486张图像。这些数据集由杜伦大学创建,用于无人机视觉检测和跟踪的研究。数据集内容丰富,包括从地面和无人机搭载的摄像头捕获的图像,涵盖了多种环境和条件。创建过程中,数据集经过精心标注和处理,以确保数据质量。这些数据集主要用于评估和改进无人机检测和跟踪技术,特别是在复杂环境和动态场景中的应用。
arXiv 收录