Voxel51/VisDrone2019-DET|无人机视觉数据集|目标检测数据集
收藏数据集概述
名称: VisDrone2019-DET
样本数量: 8629
语言: 英语
许可证: cc-by-sa-3.0
任务类别: 目标检测
媒体类型: 图像
数据集创建者: AISKYEYE团队,天津大学机器学习和数据挖掘实验室
数据集来源:
- 仓库: https://github.com/VisDrone/VisDrone-Dataset
- 论文: Detection and Tracking Meet Drones Challenge
数据集结构
-
样本字段:
- id: fiftyone.core.fields.ObjectIdField
- filepath: fiftyone.core.fields.StringField
- tags: fiftyone.core.fields.ListField(fiftyone.core.fields.StringField)
- metadata: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.metadata.ImageMetadata)
- ground_truth: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Detections)
-
数据集分割: 训练集、验证集、测试集
数据集创建
- 源数据生产者: AISKYEYE团队,天津大学机器学习和数据挖掘实验室
- 个人和敏感信息: 数据集作者已尽力排除可识别信息以保护隐私。如发现个人或车辆信息,请联系作者进行移除。
引用信息
bibtex @ARTICLE{9573394, author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, title={Detection and Tracking Meet Drones Challenge}, year={2021}, volume={}, number={}, pages={1-1}, doi={10.1109/TPAMI.2021.3119563}}
版权信息
- 版权所有者: AISKYEYE团队,天津大学机器学习和数据挖掘实验室
- 许可证详情: 创意共享署名-非商业性使用-相同方式共享3.0许可证
以上信息基于提供的数据集详情页面README文件内容整理。

MeSH
MeSH(医学主题词表)是一个用于索引和检索生物医学文献的标准化词汇表。它包含了大量的医学术语和概念,用于描述医学文献中的主题和内容。MeSH数据集包括主题词、副主题词、树状结构、历史记录等信息,广泛应用于医学文献的分类和检索。
www.nlm.nih.gov 收录
alpacaGPT4_llama8b-v120-jb-seed2-alpaca_512_ngt0.7_tp0.9
该数据集包含了用户和助手之间的对话,具有用户和助手发言的文本特征,以及一个索引级别特征。数据集分为训练集,共有52001条对话记录。
huggingface 收录
China Health and Nutrition Survey (CHNS)
China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。
www.cpc.unc.edu 收录
Plant-Diseases
Dataset for Plant Diseases containg variours Plant Disease
kaggle 收录
PCLT20K
PCLT20K数据集是由湖南大学等机构创建的一个大规模PET-CT肺癌肿瘤分割数据集,包含来自605名患者的21,930对PET-CT图像,所有图像都带有高质量的像素级肿瘤区域标注。该数据集旨在促进医学图像分割研究,特别是在PET-CT图像中肺癌肿瘤的分割任务。
arXiv 收录