five

Hybrid artificial neural network for short-term electricity load forecasting|电力负荷预测数据集|人工神经网络数据集

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
电力负荷预测
人工神经网络
下载链接:
http://doi.nrct.go.th/?page=resolve_doi&resolve_doi=10.14457/TU.the.2016.1110
下载链接
链接失效反馈
资源简介:
Numerous research have been being conducted by many researchers in the field of electricity forecasting with the purpose of matching the forecasted outcomes with the actual consumption for the next day. This is important since both the under and over forecasting lead to revenue reductions. Even though the existing forecasting techniques can forecast the electricity consumption up to a considerable level, small errors can reduce the revenue in large amounts. Therefore, the electricity forecasting field is still active and strategies and improvements for the existing techniques for reducing the forecasting errors are always appreciated. Thus, the objective of this research is to improve the electricity forecasting outcomes or further reducing the electricity forecasting errors for the case of Thailand.Based on the literatures, Artificial Neural Network (ANN) is selected as the technique to forecast the daily electricity consumption. ANN has the ability of recognizing and learning non-linear patterns in data. However, ANN has many internal and external parameters and training methods which have to be arranged in the optimum way. These optimally arranged parameters and training algorithms can significantly improve the forecasting outcomes. Nevertheless, this research mainly focuses on finding the best training algorithm to train the ANN for electricity demand forecasting. The main experiment is supported by two other experiments where they help to find the optimum number of inputs and outputs to the ANN, the amount of data needed to train the ANN, and the optimum number of hidden units of ANN for electricity demand forecasting.Due to the limitations of using backpropagation training algorithm to train the ANN, two stochastic optimization techniques are introduced to optimize the weights and bias of the ANN: Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Using the positive characteristic of both the algorithms, a combined algorithm is created to train the ANN. An experiment is arranged to find the best training algorithm out of these four algorithms. A sample data set is selected from the data gathered by Electricity Generating Authority of Thailand (EGAT). The sample set consist with data from 1st January, 2012 to 31st December, 2013 where one year data is used for training the ANN and one year data is used for testing. The experiment is started with cleaning the selected data set using the time window based data cleaning technique. ANN with four inputs (Lt(d-7), Lt(d-1), Tt(d-1), Tt(d)) and one output (Ft(d)) is created to forecast each time period t of each day d. The ANN consist with one hidden layer and four hidden neurons. Backpropagation training algorithm, GA, PSO, and hybridized training algorithm are used to train the created ANN with one year data, respectively. Forecasting outcomes from each training algorithm are evaluated in term of the percentage error (Mean Absolute Percentage Error). According to the yearly average MAPE, the hybridized training algorithm performs well compared to the other three training algorithms. Genetic algorithm also gives competitive results compared to the hybridized training algorithm. However, Particle Swarm Optimization and backpropagation training algorithms are fairly good compared to the other two training algorithms. Regardless of the training algorithm, days in December are hard to forecast as their electricity consumption is significantly low compared to the other months. Therefore, forecasted outcomes are always higher than the actual consumption. Findings of this research will add a great value to the electricity forecasting filed and the users of ANN. The research will help to define the inputs, outputs, and required data for electricity forecasting and most importantly for selecting the best training algorithm for the ANNs.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

FAOSTAT Agricultural Data

FAOSTAT Agricultural Data 是由联合国粮食及农业组织(FAO)提供的全球农业数据集。该数据集涵盖了农业生产、贸易、价格、土地利用、水资源、气候变化、人口统计等多个方面的详细信息。数据包括了全球各个国家和地区的农业统计数据,旨在为政策制定者、研究人员和公众提供全面的农业信息。

www.fao.org 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录