five

Probabilistic cytoarchitectonic map of Area 5L (SPL) (v8.4)

收藏
DataCite Commons2021-07-20 更新2025-04-15 收录
下载链接:
https://kg.ebrains.eu/search/instances/Dataset/1100df93-93f4-4091-bf2e-6eb48a2d56ff
下载链接
链接失效反馈
资源简介:
This dataset contains the distinct architectonic Area 5L (SPL) in the individual, single subject template of the MNI Colin 27 as well as the MNI ICBM 152 2009c nonlinear asymmetric reference space. As part of the Julich-Brain cytoarchitectonic atlas, the area was identified using cytoarchitectonic analysis on cell-body-stained histological sections of 10 human postmortem brains obtained from the body donor program of the University of Düsseldorf. The results of the cytoarchitectonic analysis were then mapped to both reference spaces, where each voxel was assigned the probability to belong to Area 5L (SPL). The probability map of Area 5L (SPL) are provided in the NifTi format for each brain reference space and hemisphere. The Julich-Brain atlas relies on a modular, flexible and adaptive framework containing workflows to create the probabilistic brain maps for these structures. Note that methodological improvements and integration of new brain structures may lead to small deviations in earlier released datasets. Other available data versions of Area 5L (SPL): Scheperjans et al. (2018) [Data set, v8.2] [DOI: 10.25493/A5V4-HFH](https://doi.org/10.25493%2FA5V4-HFH) The most probable delineation of Area 5L (SPL)derived from the calculation of a maximum probability map of all currently released Julich-Brain brain structures can be found here: Amunts et al. (2019) [Data set, v1.13] [DOI: 10.25493/Q3ZS-NV6](https://doi.org/10.25493%2FQ3ZS-NV6) Amunts et al. (2019) [Data set, v1.18] [DOI: 10.25493/8EGG-ZAR](https://doi.org/10.25493%2F8EGG-ZAR) Amunts et al. (2020) [Data set, v2.2] [DOI: 10.25493/TAKY-64D](https://doi.org/10.25493%2FTAKY-64D)
提供机构:
Human Brain Project Neuroinformatics Platform
创建时间:
2019-06-06
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
5,000+
优质数据集
54 个
任务类型
进入经典数据集