five

Related Data for: Acquiring expertise in precision sport – What can we learn from an elite snooker player?|斯诺克运动数据集|生物力学数据集

收藏
Mendeley Data2024-03-27 更新2024-06-27 收录
斯诺克运动
生物力学
下载链接:
https://researchdata.nie.edu.sg/citation?persistentId=doi:10.25340/R4/VHIVW9
下载链接
链接失效反馈
资源简介:
Snooker can be an attractive life-long physical activity, given its popularity across all age groups in Asia and Europe. However, scientific research on the cueing movement is limited. This case study presented the biomechanical profiles of the cueing movement in an elite male snooker player (age 37 years old, height 173 cm, body mass 70 kg). Kinematics of the upper limb and cue stick, were examined in five selected snooker tasks (warm-up, stun, top spin, back spin, and stop shots) using the Vicon motion capture system. Ground reaction forces and centre of pressure characteristics were recorded using two Kistler force platforms. Results showed that the cueing movement was contributed primarily by elbow flexion/extension and much less wrist flexion/extension. The high degree of cue stick position overlap between the practice swing and final stroke indicated high level of cueing precision. Weight transfer between feet revealed a slight lean towards the left foot throughout the final stroke, confirming that the elite player was able to maintain high stance stability when executing the cueing movement. Results presented in the present study can serve as a reference for practitioners and scientists to detect error, enhance training, and improve performance in snooker. For practical applications, snooker players are advised to stabilise their shoulder during the cueing movement and deliver the cue stick primarily via elbow movements.
创建时间:
2023-06-28
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

学生课堂行为数据集 (SCB-dataset3)

学生课堂行为数据集(SCB-dataset3)由成都东软学院创建,包含5686张图像和45578个标签,重点关注六种行为:举手、阅读、写作、使用手机、低头和趴桌。数据集覆盖从幼儿园到大学的不同场景,通过YOLOv5、YOLOv7和YOLOv8算法评估,平均精度达到80.3%。该数据集旨在为学生行为检测研究提供坚实基础,解决教育领域中学生行为数据集的缺乏问题。

arXiv 收录

ST-EVCDP

这是一个关于公共电动汽车充电桩的时空充电需求预测的实际数据集,涵盖了18,061个公共充电桩的数据,包括坐标、充电器数量、占用情况和价格等信息。数据集用于学术研究,支持区域电动汽车充电需求预测。

github 收录

FAOSTAT Agricultural Data

FAOSTAT Agricultural Data 是由联合国粮食及农业组织(FAO)提供的全球农业数据集。该数据集涵盖了农业生产、贸易、价格、土地利用、水资源、气候变化、人口统计等多个方面的详细信息。数据包括了全球各个国家和地区的农业统计数据,旨在为政策制定者、研究人员和公众提供全面的农业信息。

www.fao.org 收录