five

Composite multi-objective optimization on a new collaborative vehicle routing problem with shared carriers and depots|物流优化数据集|多目标优化数据集

收藏
DataCite Commons2020-08-26 更新2024-07-27 收录
物流优化
多目标优化
下载链接:
https://figshare.com/articles/Composite_multi-objective_optimization_on_a_new_collaborative_vehicle_routing_problem_with_shared_carriers_and_depots/8867642
下载链接
链接失效反馈
资源简介:
This study proposes a novel logistics collaboration model to address the collaborative vehicle routing problem that involves shared carriers and depots (CVRP-SCD). This is inspired by the fact that a depot often has orders for multiple carriers, and a carrier often delivers orders to multiple depots. This problem involves decreasing transportation distances and improving capacity utilization by extending supply-side unilateral logistics collaborations to simultaneously consider collaborations between supply- and demand-sides. Further, the proposed CVRP-SCD model uses a composite objective that is a weighted sum of four objectives — including quality, reliability, cost, and time — to accurately evaluate and analyze the efficiency improvement. An extended variable neighborhood search algorithm is presented based on three matrices, including the carrier collaboration matrix, depot collaboration matrix, and transportation sequence matrix. This algorithm aims to address the trade-offs among multiple objectives for the CVRP-SCD problem by incorporating new operators based on specific features involved in the problem.
提供机构:
figshare
创建时间:
2019-07-13
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

rag-datasets/rag-mini-bioasq

该数据集主要用于问答和句子相似性任务,涉及生物医学领域。数据集包含两个配置:text-corpus和question-answer-passages,分别对应不同的数据文件路径。数据集来源于BioASQ任务11b的训练数据集,并通过`generate.py`脚本生成了子集。

hugging_face 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

Natural Scene Braille Character Recognition Dataset

There are a total of 1157 Braille segment images in this dataset, including 925 in the training set and 232 in the testing set. There are two folders in the directory of this dataset: character_label and segment_label. The character_rabel file contains three formats of Braille segment images: (1) Braille segment images and label files stored in ICDAR-2015 format, each. jpg file corresponds to a. txt file, where each line stores the position and recognition label of a braille character rectangle box. The data corresponds to the coordinates of the four points in the rectangle box and the recognized numerical label; (2) The original format of the data is stored in the folder org. Each .jpg file in this folder corresponds to a .json file which marked by labelme software; (3) VOC format, stored in voc-data folder. This folder stores images and corresponding .xml files in VOC format, and marks the position of each braille character rectangle box and its corresponding numerical label information in the .xml file. In addition, the original Braille images of natural scenes and the corresponding Braille segment markings .json files are stored in the folder segment_label.

DataCite Commons 收录

LibriSpeech

LibriSpeech 是一个大约 1000 小时的 16kHz 英语朗读语音语料库,由 Vassil Panayotov 在 Daniel Povey 的协助下编写。数据来自 LibriVox 项目的已读有声读物,并经过仔细分割和对齐。

OpenDataLab 收录