Composite multi-objective optimization on a new collaborative vehicle routing problem with shared carriers and depots|物流优化数据集|多目标优化数据集
收藏URPC系列数据集, S-URPC2019, UDD
URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。
github 收录
rag-datasets/rag-mini-bioasq
该数据集主要用于问答和句子相似性任务,涉及生物医学领域。数据集包含两个配置:text-corpus和question-answer-passages,分别对应不同的数据文件路径。数据集来源于BioASQ任务11b的训练数据集,并通过`generate.py`脚本生成了子集。
hugging_face 收录
FER2013
FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。
github 收录
Natural Scene Braille Character Recognition Dataset
There are a total of 1157 Braille segment images in this dataset, including 925 in the training set and 232 in the testing set. There are two folders in the directory of this dataset: character_label and segment_label. The character_rabel file contains three formats of Braille segment images: (1) Braille segment images and label files stored in ICDAR-2015 format, each. jpg file corresponds to a. txt file, where each line stores the position and recognition label of a braille character rectangle box. The data corresponds to the coordinates of the four points in the rectangle box and the recognized numerical label; (2) The original format of the data is stored in the folder org. Each .jpg file in this folder corresponds to a .json file which marked by labelme software; (3) VOC format, stored in voc-data folder. This folder stores images and corresponding .xml files in VOC format, and marks the position of each braille character rectangle box and its corresponding numerical label information in the .xml file. In addition, the original Braille images of natural scenes and the corresponding Braille segment markings .json files are stored in the folder segment_label.
DataCite Commons 收录
LibriSpeech
LibriSpeech 是一个大约 1000 小时的 16kHz 英语朗读语音语料库,由 Vassil Panayotov 在 Daniel Povey 的协助下编写。数据来自 LibriVox 项目的已读有声读物,并经过仔细分割和对齐。
OpenDataLab 收录