five

A Single-cell Perturbation Landscape of Colonic Stem Cell Polarisation|结直肠癌研究数据集|单细胞分析数据集

收藏
Mendeley Data2024-05-10 更新2024-06-28 收录
结直肠癌研究
单细胞分析
下载链接:
https://zenodo.org/records/8167657
下载链接
链接失效反馈
资源简介:
Cancer cells are regulated by oncogenic mutations and microenvironmental signals, yet these processes are often studied separately. To functionally map how cell-intrinsic and cell-extrinsic cues co-regulate cell-fate in colorectal cancer (CRC), we performed a systematic single-cell analysis of 1,107 colonic organoid cultures regulated by 1) CRC oncogenic mutations, 2) microenvironmental fibroblasts and macrophages, 3) stromal ligands, and 4) signalling inhibitors. Multiplexed single-cell analysis revealed a stepwise epithelial differentiation landscape dictated by combinations of oncogenes and stromal ligands, spanning from fibroblast-induced Clusterin (CLU)+ revival colonic stem cells (revCSC) to oncogene-driven LRIG1+ hyper-proliferative CSC (proCSC). The transition from revCSC to proCSC is regulated by decreasing WNT3A and TGF-β-driven YAP signalling and increasing KRASG12D or stromal EGF/Epiregulin-activated MAPK/PI3K flux. We find APC-loss and KRASG12D collaboratively limit access to revCSC and disrupt stromal-epithelial communication -- trapping epithelia in the proCSC fate. These results reveal that oncogenic mutations dominate homeostatic differentiation by obstructing cell-extrinsic regulation of cell-fate plasticity.
创建时间:
2023-07-27
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

lmarena-ai/PPE-MATH-Best-of-K

--- dataset_info: features: - name: question_id dtype: string - name: problem dtype: string - name: level dtype: string - name: type dtype: string - name: solution dtype: string - name: sanitized_solution dtype: string - name: model_name dtype: string - name: prompt dtype: string - name: scores sequence: bool - name: parsed_outputs sequence: string - name: mean_score dtype: float64 - name: response_1 dtype: string - name: response_2 dtype: string - name: response_3 dtype: string - name: response_4 dtype: string - name: response_5 dtype: string - name: response_6 dtype: string - name: response_7 dtype: string - name: response_8 dtype: string - name: response_9 dtype: string - name: response_10 dtype: string - name: response_11 dtype: string - name: response_12 dtype: string - name: response_13 dtype: string - name: response_14 dtype: string - name: response_15 dtype: string - name: response_16 dtype: string - name: response_17 dtype: string - name: response_18 dtype: string - name: response_19 dtype: string - name: response_20 dtype: string - name: response_21 dtype: string - name: response_22 dtype: string - name: response_23 dtype: string - name: response_24 dtype: string - name: response_25 dtype: string - name: response_26 dtype: string - name: response_27 dtype: string - name: response_28 dtype: string - name: response_29 dtype: string - name: response_30 dtype: string - name: response_31 dtype: string - name: response_32 dtype: string - name: conflict_pairs sequence: sequence: int64 - name: sampled_conflict_pairs sequence: sequence: int64 splits: - name: train num_bytes: 28121544 num_examples: 512 download_size: 12452688 dataset_size: 28121544 configs: - config_name: default data_files: - split: train path: data/train-* --- # Overview This contains the MATH correctness preference evaluation set for Preference Proxy Evaluations. The prompts are sampled from [MATH](https://huggingface.co/datasets/hendrycks/competition_math). This dataset is meant for benchmarking and evaluation, not for training. [Paper](https://arxiv.org/abs/2410.14872) [Code](https://github.com/lmarena/PPE) # License User prompts are licensed under MIT, and model outputs are governed by the terms of use set by the respective model providers. # Citation ``` @misc{frick2024evaluaterewardmodelsrlhf, title={How to Evaluate Reward Models for RLHF}, author={Evan Frick and Tianle Li and Connor Chen and Wei-Lin Chiang and Anastasios N. Angelopoulos and Jiantao Jiao and Banghua Zhu and Joseph E. Gonzalez and Ion Stoica}, year={2024}, eprint={2410.14872}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2410.14872}, } ```

hugging_face 收录

BBGRE

The Brain & Body Genetic Resource Exchange (BBGRE) provides a resource for investigating the genetic basis of neurodisability. It combines phenotype information from patients with neurodevelopmental and behavioural problems with clinical genetic data, and displays this information on the human genome map.

国家生物信息中心 收录

中国区域250米植被覆盖度数据集(2000-2024)

该数据集是中国区域2000至2024年月度植被覆盖度产品,空间分辨率250米,合成方式采用月最大值合成,每年12期,共299期。本产品采用基于归一化植被指数(NDVI)像元二分模型,根据土地利用类型确定纯植被像元值和纯裸土像元值,实现植被覆盖度计算。本产品去除湖泊、河流、冰川/永久积雪等区域。其中,NDVI数据来源于国家青藏高原科学数据中心中国区域250米归一化植被指数数据集(2000-2024)产品。通过时空变化趋势分析检验法分析,该数据集符合时间变化趋势和空间变化趋势。该数据集能够为全国区域生态质量评价、重要生态空间调查评估等工作提供数据参考。

国家青藏高原科学数据中心 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录