five

VlietBuilding|建筑能效数据集|模型预测控制数据集

收藏
Mendeley Data2024-03-27 更新2024-06-26 收录
建筑能效
模型预测控制
下载链接:
https://data.mendeley.com/datasets/xzdy23nzvj
下载链接
链接失效反馈
资源简介:
These are historical operational data from a thermally activated test building located in Levuen, Belgium, from 2020-10-21 until 2021-04-20. The data were obtained when controlling the building with a model predictive controller that alternated different controller models during its operation. Additionally, three Python scripts are provided to visualize the experiments, the key performance indicators, and the control prediction deviations. This is a standalone package with no other dependencies than Numpy, Pandas and Matplotlib. The scripts can be run directly to generate the plots. A brief description of the data is provided below: - plant.csv : time-series data for the measurements in the test building during operation. - disturbances.csv : time-series data for the disturbances during operation. This includes weather conditions, pricing, and comfort setpoints. - historical_optimizations.csv : history of all optimization trajectories. Every time step there is a full optimization trajectory during a prediction horizon of two days from that time step. These data are used to compute the controller prediction deviations. - /pred_error : prediction errors obtained as the "a priori" values of the state estimator when using the controller models to predict the temperature with inputs from "plant.csv" and "disturbances.csv". These data are used to compute the n-step-ahead prediction errors. bb, gb, and wb indicate grey-box model, black-box model, and white-box model. The next integer indicates the experiment number. the final integer indicates the prediction horizon in seconds. E.g.: "pred_error_gb_2_86400.csv" contains the prediction errors when using the grey-box model to estimate the temperature with a prediction horizon of one day. - /kpis : Summary of obtained KPIs for each experiment and controller model.
创建时间:
2024-01-23
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

rag-datasets/rag-mini-bioasq

该数据集主要用于问答和句子相似性任务,涉及生物医学领域。数据集包含两个配置:text-corpus和question-answer-passages,分别对应不同的数据文件路径。数据集来源于BioASQ任务11b的训练数据集,并通过`generate.py`脚本生成了子集。

hugging_face 收录

LinkedIn Salary Insights Dataset

LinkedIn Salary Insights Dataset 提供了全球范围内的薪资数据,包括不同职位、行业、地理位置和经验水平的薪资信息。该数据集旨在帮助用户了解薪资趋势和市场行情,支持职业规划和薪资谈判。

www.linkedin.com 收录

中国农村教育发展报告

该数据集包含了中国农村教育发展的相关数据,涵盖了教育资源分布、教育质量、学生表现等多个方面的信息。

www.moe.gov.cn 收录

EmoBench-M

EmoBench-M是由深圳大学计算机科学与软件工程学院等机构创建的一个新型基准数据集,旨在评估大型多模态语言模型在情感智能方面的能力。该数据集基于心理学的情感理论,包含13个评估场景,涵盖了基础情感识别、对话情感理解和复杂社会情感分析三个维度。数据集采用视频、音频和文本等多模态数据,为评估大型多模态语言模型在真实世界交互中的情感智能提供了全面的基准。

arXiv 收录

Yahoo Finance

Dataset About finance related to stock market

kaggle 收录