five

lol-datasets|电子竞技数据集|游戏数据分析数据集

收藏
github2021-05-09 更新2024-05-31 收录
电子竞技
游戏数据分析
下载链接:
https://github.com/superblaubeere27/lol-datasets
下载链接
链接失效反馈
资源简介:
包含多个《英雄联盟》游戏数据集,数据集按照平台、赛季、游戏模式、队列、补丁和大小进行命名和组织。

This dataset encompasses multiple game datasets from 'League of Legends', organized and named according to platform, season, game mode, queue, patch, and size.
创建时间:
2019-05-05
原始信息汇总

数据集概述

数据集名称与格式

  • 名称格式:{platform}_{seasonId}_{gameMode}_{queue}_{patch}_{size}.7z

可用数据集列表

Patch Platform Season Queue Size Download link
9.13 EUW 13 400 (5v5 Draft Pick games) 52384 Google Drive
9.16 EUW, EUN, NA 13 400 (5v5 Draft Pick games (Normal, Ranked, Flex)) 623255 Google Drive
AI搜集汇总
数据集介绍
main_image_url
构建方式
lol-datasets数据集的构建基于《英雄联盟》游戏的多维度数据采集,涵盖了不同平台、赛季、游戏模式和队列的匹配数据。数据通过Riot Games官方API获取,确保了数据的权威性和时效性。每个数据文件以`{platform}_{seasonId}_{gameMode}_{queue}_{patch}_{size}.7z`的格式命名,便于用户快速识别和筛选所需数据。数据集的分层结构设计使得数据管理更加高效,同时也为后续的分析和研究提供了坚实的基础。
特点
lol-datasets的特点在于其广泛覆盖了多个游戏平台(如EUW、EUN、NA等)和不同赛季的游戏数据,特别是5v5 Draft Pick模式下的比赛记录。数据集不仅包含了常规匹配数据,还涵盖了排位赛和灵活组排等多种队列类型。此外,数据按游戏版本(Patch)进行分类,确保了数据的时效性和针对性。这种多维度的数据覆盖为研究《英雄联盟》游戏策略、玩家行为及游戏平衡性提供了丰富的素材。
使用方法
使用lol-datasets时,用户可通过Google Drive链接下载所需的数据文件。每个文件均以压缩格式(.7z)存储,解压后可获得详细的比赛数据。用户可根据文件名中的平台、赛季、游戏模式、队列和版本信息快速定位所需数据。数据集适用于多种研究场景,如游戏数据分析、机器学习模型训练以及玩家行为研究等。通过结合Riot Games官方文档,用户可以进一步解析数据中的具体字段,从而深入挖掘游戏中的潜在规律。
背景与挑战
背景概述
lol-datasets数据集由Riot Games的开发者社区创建,旨在为《英雄联盟》游戏的数据分析提供支持。该数据集涵盖了多个赛季、平台和游戏模式,特别是5v5 Draft Pick模式的对战数据。数据集的核心研究问题在于如何通过大规模的游戏数据,深入分析玩家行为、游戏平衡性以及战术策略的演变。自2019年发布以来,该数据集已成为电竞分析和游戏AI研究的重要资源,推动了相关领域的技术进步。
当前挑战
lol-datasets面临的挑战主要体现在两个方面。首先,游戏数据的多样性和复杂性对分析模型提出了高要求,例如如何从海量数据中提取有效的特征以支持战术分析或玩家行为预测。其次,数据集的构建过程中,由于游戏版本更新频繁,不同版本间的数据兼容性和一致性成为一大难题。此外,数据采集的规模和质量也受到网络延迟、玩家隐私保护等因素的限制,进一步增加了数据处理的复杂性。
常用场景
经典使用场景
lol-datasets数据集广泛应用于电子竞技分析领域,特别是在《英雄联盟》游戏的战术研究和玩家行为分析中。研究者通过分析不同赛季、平台和游戏模式下的比赛数据,深入探讨游戏策略的演变和玩家决策的优化路径。
解决学术问题
该数据集为学术界提供了丰富的游戏比赛数据,解决了游戏策略优化、玩家行为模式识别以及电子竞技生态系统研究中的关键问题。通过对大量比赛数据的分析,研究者能够揭示游戏平衡性、玩家表现与团队协作之间的复杂关系,推动了电子竞技研究的深入发展。
衍生相关工作
基于lol-datasets,许多经典研究工作得以展开,例如《英雄联盟》战术推荐系统的开发、玩家行为预测模型的构建以及游戏平衡性分析工具的研发。这些工作不仅推动了电子竞技研究的理论发展,也为实际应用提供了有力的技术支持。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LFW

人脸数据集;LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。 URL: http://vis-www.cs.umass.edu/lfw/index.html#download

AI_Studio 收录

Plant-Diseases

Dataset for Plant Diseases containg variours Plant Disease

kaggle 收录

猫狗图像数据集

该数据集包含猫和狗的图像,每类各12500张。训练集和测试集分别包含10000张和2500张图像,用于模型的训练和评估。

github 收录

中国空气质量数据集(2014-2020年)

数据集中的空气质量数据类型包括PM2.5, PM10, SO2, NO2, O3, CO, AQI,包含了2014-2020年全国360个城市的逐日空气质量监测数据。监测数据来自中国环境监测总站的全国城市空气质量实时发布平台,每日更新。数据集的原始文件为CSV的文本记录,通过空间化处理生产出Shape格式的空间数据。数据集包括CSV格式和Shape格式两数数据格式。

国家地球系统科学数据中心 收录

MedChain

MedChain是由香港城市大学、香港中文大学、深圳大学、阳明交通大学和台北荣民总医院联合创建的临床决策数据集,包含12,163个临床案例,涵盖19个医学专科和156个子类别。数据集通过五个关键阶段模拟临床工作流程,强调个性化、互动性和顺序性。数据来源于中国医疗网站“iiYi”,经过专业医生验证和去识别化处理,确保数据质量和患者隐私。MedChain旨在评估大型语言模型在真实临床场景中的诊断能力,解决现有基准在个性化医疗、互动咨询和顺序决策方面的不足。

arXiv 收录