five

A database of Defra statutory biodiversity metric unit values for terrestrial habitat samples across England, with plant, butterfly and bird species data|生物多样性评估数据集|环境规划数据集

收藏
DataONE2024-05-21 更新2024-06-08 收录
生物多样性评估
环境规划
下载链接:
https://search.dataone.org/view/sha256:5ee7e5137817034cba93204d2f796649bcdc276b582d70b1bf83ba05844ee09d
下载链接
链接失效反馈
资源简介:
Policies requiring biodiversity no net loss or net gain as an outcome of environmental planning have become more prominent worldwide, catalysing interest in biodiversity offsetting as a mechanism to compensate for development impacts on nature. Offsets rely on credible and evidence-based methods to quantify biodiversity losses and gains. Following the introduction of the United Kingdom’s Environment Act in November 2021, all new developments requiring planning permission in England are expected to demonstrate a 10% biodiversity net gain from 2024, calculated using the statutory biodiversity metric framework (Defra, 2023). The metric is used to calculate both baseline and proposed post-development biodiversity units, and is set to play an increasingly prominent role in nature conservation nationwide. The metric has so far received limited scientific scrutiny. This dataset comprises a database of statutory biodiversity metric unit values for terrestrial habitat samples across England. For..., Study sites We studied 24 sites across the Environmental Change Network (ECN), Long Term Monitoring Network (LTMN) and Ecological Continuity Trust (ECT). Biodiversity units were calculated following field visits by the authors, whilst species data (response variables) were derived from long-term ecological change monitoring datasets collected by the sites and mostly held in the public domain (Table S1). We used all seven ECN sites in England. We selected a complementary 13 LTMN sites to give good geographic and habitat representation across England. We included four datasets from sites supported by the ECT where 2 x 2m vascular plant quadrat data were available for reuse. The 24 sites included samples from all terrestrial broad habitats (sensu Defra 2023) in England, except urban and individual trees: grassland (8), wetland (6), woodland and forest (5), sparsely vegetated land (2), cropland (2), heathland and shrub (1). Non-terrestrial broad habitats (rivers and lakes, marine inlets and..., Microsoft Excel/Open Office, # A database of Defra statutory biodiversity metric unit values for terrestrial habitat samples across England, with plant, butterfly and bird species data --- Policies requiring biodiversity no net loss or net gain as an outcome of environmental planning have become more prominent worldwide, catalysing interest in biodiversity offsetting as a mechanism to compensate for development impacts on nature. Offsets rely on credible and evidence-based methods to quantify biodiversity losses and gains. Following the introduction of the United Kingdom’s Environment Act in November 2021, all new developments requiring planning permission in England are expected to  demonstrate a 10% biodiversity net gain from 2024, calculated using the statutory biodiversity metric framework (Defra, 2023). The metric is used to calculate both baseline and proposed post-development biodiversity units, and is set to play an increasingly prominent role in nature conservation nationwide. The metric has so far recei...
创建时间:
2024-05-22
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

中国食物成分数据库

食物成分数据比较准确而详细地描述农作物、水产类、畜禽肉类等人类赖以生存的基本食物的品质和营养成分含量。它是一个重要的我国公共卫生数据和营养信息资源,是提供人类基本需求和基本社会保障的先决条件;也是一个国家制定相关法规标准、实施有关营养政策、开展食品贸易和进行营养健康教育的基础,兼具学术、经济、社会等多种价值。 本数据集收录了基于2002年食物成分表的1506条食物的31项营养成分(含胆固醇)数据,657条食物的18种氨基酸数据、441条食物的32种脂肪酸数据、130条食物的碘数据、114条食物的大豆异黄酮数据。

国家人口健康科学数据中心 收录

中国空气质量数据集(2014-2020年)

数据集中的空气质量数据类型包括PM2.5, PM10, SO2, NO2, O3, CO, AQI,包含了2014-2020年全国360个城市的逐日空气质量监测数据。监测数据来自中国环境监测总站的全国城市空气质量实时发布平台,每日更新。数据集的原始文件为CSV的文本记录,通过空间化处理生产出Shape格式的空间数据。数据集包括CSV格式和Shape格式两数数据格式。

国家地球系统科学数据中心 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录

CosyVoice 2

CosyVoice 2是由阿里巴巴集团开发的多语言语音合成数据集,旨在通过大规模多语言数据集训练,实现高质量的流式语音合成。数据集通过有限标量量化技术改进语音令牌的利用率,并结合预训练的大型语言模型作为骨干,支持流式和非流式合成。数据集的创建过程包括文本令牌化、监督语义语音令牌化、统一文本-语音语言模型和块感知流匹配模型等步骤。该数据集主要应用于语音合成领域,旨在解决高延迟和低自然度的问题,提供接近人类水平的语音合成质量。

arXiv 收录