five

Plants of the World Online (POWO)|植物学数据集|生态学数据集

收藏
powo.science.kew.org2024-10-30 收录
植物学
生态学
下载链接:
https://powo.science.kew.org/
下载链接
链接失效反馈
资源简介:
Plants of the World Online (POWO) 是一个全球植物数据库,提供了关于植物物种的详细信息,包括分类学、分布、生态学和保护状态等。该数据库旨在为植物学家、生态学家和公众提供一个全面的植物信息资源。
提供机构:
powo.science.kew.org
AI搜集汇总
数据集介绍
main_image_url
构建方式
Plants of the World Online (POWO) 数据集的构建基于全球植物多样性的广泛研究与合作。该数据集整合了来自全球各地的植物学研究成果,包括植物分类、分布、生态信息以及相关文献。通过与多个国际植物学数据库和研究机构的协作,POWO 数据集得以不断更新和扩展,确保其内容的全面性和准确性。数据收集过程严格遵循科学方法,包括实地考察、标本采集和文献综述,以确保每一项数据的科学性和可靠性。
特点
POWO 数据集以其全球覆盖和高度详细的信息著称。该数据集包含了超过30万种植物的详细描述,涵盖了从常见植物到稀有和濒危物种的广泛范围。每个条目都包括植物的学名、分类信息、地理分布、生态习性以及相关的科学文献引用。此外,POWO 数据集还提供了丰富的图像资源,包括植物的形态特征图和生境照片,极大地增强了数据的可视化和教育价值。
使用方法
POWO 数据集适用于多种科学研究和教育应用。研究人员可以利用该数据集进行植物分类学、生态学和保护生物学的研究,通过检索特定植物的信息来支持其研究工作。教育工作者和学生可以利用 POWO 数据集进行植物学课程的教学和学习,通过丰富的图像和详细的信息来增强对植物多样性的理解。此外,POWO 数据集还支持公众科学项目,鼓励公众参与植物数据的收集和验证,从而促进科学知识的普及和共享。
背景与挑战
背景概述
Plants of the World Online (POWO) 数据集是由皇家植物园(Royal Botanic Gardens, Kew)于2017年创建的,旨在提供全球植物物种的全面在线数据库。该数据集的核心研究问题包括植物物种的分类、分布、生态信息及其在生物多样性保护中的应用。POWO 不仅整合了大量的植物学文献和标本数据,还通过与全球多个植物研究机构的合作,确保了数据的权威性和广泛性。这一数据集对植物学研究、生态保护和环境科学领域产生了深远影响,为全球植物资源的可持续利用提供了重要支持。
当前挑战
POWO 数据集在构建过程中面临了多重挑战。首先,植物物种的多样性和分布广泛性使得数据收集和整合变得极为复杂。其次,不同地区和研究机构的数据标准和格式差异,增加了数据统一和质量控制的难度。此外,随着新物种的不断发现和分类学研究的深入,数据集需要持续更新和维护,以保持其时效性和准确性。这些挑战不仅影响了数据集的构建效率,也对后续的数据分析和应用提出了更高的要求。
发展历史
创建时间与更新
Plants of the World Online (POWO) 数据集由皇家植物园(Kew Gardens)于2017年创建,旨在提供全球植物物种的全面在线资源。该数据集自创建以来持续更新,以反映最新的植物分类学研究成果。
重要里程碑
POWO数据集的一个重要里程碑是其在2018年成功整合了全球多个植物数据库,包括The Plant List和World Checklist of Selected Plant Families,从而显著提升了数据集的覆盖范围和准确性。此外,2020年,POWO引入了高级搜索功能和交互式地图,使用户能够更便捷地探索和查询植物信息。
当前发展情况
当前,POWO数据集已成为全球植物学研究的重要资源,为科学家、教育工作者和公众提供了丰富的植物物种信息。其持续的更新和扩展,不仅促进了植物分类学的发展,还为生态保护和生物多样性研究提供了关键数据支持。POWO的国际化合作和开放获取政策,进一步推动了全球植物知识的共享和普及。
发展历程
  • Plants of the World Online (POWO) 首次发布,由英国皇家植物园(Kew Gardens)推出,旨在提供全球植物物种的在线数据库。
    2017年
  • POWO 开始整合全球植物物种的分类信息,包括科、属和种的详细描述,以及分布和生态信息。
    2018年
  • POWO 增加了对植物物种的图像和标本记录的集成,增强了用户对植物多样性的可视化理解。
    2019年
  • POWO 引入了高级搜索功能,使用户能够根据特定的分类学特征、地理分布和生态特性进行精确查询。
    2020年
  • POWO 开始与全球其他植物数据库和研究机构合作,进一步扩展其数据覆盖范围和准确性。
    2021年
  • POWO 发布了其移动应用程序版本,方便用户在移动设备上访问全球植物物种信息。
    2022年
常用场景
经典使用场景
在植物学研究领域,Plants of the World Online (POWO) 数据集被广泛用于植物分类学和系统发育分析。该数据集整合了全球植物物种的详细信息,包括分类、分布、形态特征和生态习性等,为研究人员提供了全面的参考资源。通过POWO,科学家能够进行跨物种的比较研究,揭示植物多样性的内在规律和进化机制。
衍生相关工作
基于POWO 数据集,许多相关研究工作得以开展。例如,有研究利用POWO进行全球植物分布模型的构建,预测气候变化对植物多样性的影响;还有研究通过POWO数据集进行植物基因组学分析,揭示植物进化和适应性机制。这些衍生工作进一步丰富了植物学研究的深度和广度。
数据集最近研究
最新研究方向
在植物学领域,Plants of the World Online (POWO) 数据集的最新研究方向主要集中在利用其丰富的物种信息进行全球植物多样性的评估与保护。研究者们通过整合POWO中的地理分布数据和分类学信息,探索物种分布模式与环境因素之间的关系,从而为生物多样性保护策略提供科学依据。此外,POWO数据集还被广泛应用于机器学习算法,以提高植物物种识别的准确性和效率,推动自动化分类学的发展。这些研究不仅加深了我们对植物多样性的理解,也为全球生态系统的可持续管理提供了重要支持。
相关研究论文
  • 1
    Plants of the World Online: An Online Flora for EveryoneRoyal Botanic Gardens, Kew · 2017年
  • 2
    Global patterns of phylogenetic diversity and their driversUniversity of Copenhagen · 2021年
  • 3
    The role of plant traits in predicting species distributions: a global synthesisUniversity of Zurich · 2020年
  • 4
    Plant diversity and endemism in the Mediterranean BasinUniversity of Barcelona · 2019年
  • 5
    The global distribution of plant traits: a meta-analysisUniversity of Amsterdam · 2018年
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

RFUAV

RFUAV数据集是由浙江科技大学信息科学与工程学院开发的高质量原始射频数据集,包含37种不同无人机的约1.3 TB原始频率数据。该数据集旨在解决现有无人机检测数据集类型单一、数据量不足、信号-to-噪声比(SNR)范围有限等问题,提供了丰富的SNR级别和用于特征提取的基准预处理方法及模型评估工具。数据集适用于射频无人机检测和识别,有助于推动相关技术的研究与应用。

arXiv 收录

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录

Traditional-Chinese-Medicine-Dataset-SFT

该数据集是一个高质量的中医数据集,主要由非网络来源的内部数据构成,包含约1GB的中医各个领域临床案例、名家典籍、医学百科、名词解释等优质内容。数据集99%为简体中文内容,质量优异,信息密度可观。数据集适用于预训练或继续预训练用途,未来将继续发布针对SFT/IFT的多轮对话和问答数据集。数据集可以独立使用,但建议先使用配套的预训练数据集对模型进行继续预训练后,再使用该数据集进行进一步的指令微调。数据集还包含一定比例的中文常识、中文多轮对话数据以及古文/文言文<->现代文翻译数据,以避免灾难性遗忘并加强模型表现。

huggingface 收录