Sea Surface Temperature from Aquarius|海洋温度数据集|卫星遥感数据集
收藏
- Aquarius卫星首次发射,标志着Sea Surface Temperature from Aquarius数据集的诞生。
- Aquarius卫星开始正式运行,并首次发布Sea Surface Temperature数据,为海洋科学研究提供了新的数据来源。
- Aquarius卫星任务结束,但其生成的Sea Surface Temperature数据集继续被广泛应用于气候变化、海洋生态系统研究等领域。
- 1Aquarius/SAC-D Sea Surface Salinity and Wind Vector L2 Data Product ManualNASA Jet Propulsion Laboratory · 2013年
- 2Global Sea Surface Salinity Variations from the Aquarius SatelliteNational Center for Atmospheric Research · 2015年
- 3Validation of Aquarius Sea Surface Salinity Products Using In Situ ObservationsUniversity of Miami · 2014年
- 4Aquarius Sea Surface Salinity: Global Climatology and Seasonal VariabilityWoods Hole Oceanographic Institution · 2016年
- 5Aquarius Sea Surface Salinity Observations: A New Window on OceanographyUniversity of California, Santa Barbara · 2013年
HazyDet
HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。
arXiv 收录
AgiBot World
为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。
github 收录
中国空气质量数据集(2014-2020年)
数据集中的空气质量数据类型包括PM2.5, PM10, SO2, NO2, O3, CO, AQI,包含了2014-2020年全国360个城市的逐日空气质量监测数据。监测数据来自中国环境监测总站的全国城市空气质量实时发布平台,每日更新。数据集的原始文件为CSV的文本记录,通过空间化处理生产出Shape格式的空间数据。数据集包括CSV格式和Shape格式两数数据格式。
国家地球系统科学数据中心 收录
SWaT Dataset
SWaT Dataset是一个用于工业控制系统(ICS)安全研究的数据集,包含了模拟的网络攻击和正常操作的数据。该数据集由新加坡科技设计大学(Singapore University of Technology and Design)发布,旨在帮助研究人员开发和测试用于检测工业控制系统中网络攻击的算法和模型。
itrust.sutd.edu.sg 收录
PDT Dataset
PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。
arXiv 收录