five

[SAMPLE] wrapped.io | Consumer Review Data | Public & Private Company Data | Trustpilot | Public ...|消费者评论数据集|公司分析数据集

收藏
Databricks2024-05-09 收录
消费者评论
公司分析
下载链接:
https://marketplace.databricks.com/details/fc8ed5e0-ea77-4772-92e7-fbd86a9eba11/Wrapped-io_SAMPLE-wrapped.io-Consumer-Review-Data-Public-&-Private-Company-Data-Trustpilot-Public-
下载链接
链接失效反馈
资源简介:
Depth and Diversity of Reviews: Unlike standard datasets that might only focus on numerical ratings, these Consumer Review Data | Seller Reviews Data datasets include qualitative reviews, providing a richer and more nuanced understanding of company cultures and employee/customer experiences. Data feature detailed reviews, ratings, and feedback on a wide range of aspects such as work-life balance, management quality, functionality. High volume and superior quality ensure robust and accurate data analytics. Data are Ideal for private equity and venture capital firms, applied by market analysts, HR professionals, and corporate strategists. These Consumer Review Data | Seller Ratings Data | Product Review Data datasets are vital tools for deal-sourcing, competitive analysis, strategic planning. Cross-Industry and Global Reach: The Consumer Review Data | Seller Ratings Data datasets' extensive coverage across various industries and countries sets them apart, offering a comprehensive view of company performances worldwide. Integrated Employee and Employer Perspectives: The unique combination of employee reviews with employer information offers a holistic view of each company. What are the primary use-cases or verticals of this Consumer Review Data | Seller Ratings Data? Market Research: Providing insights into industry-specific employee/customer satisfaction and company cultures, useful for competitors and market analysts. Investment and Financial Analysis: Helping investors assess company health and stability through employee/customer satisfaction and company culture indicators. Corporate Strategy: Assisting businesses in benchmarking against competitors and identifying areas for internal improvement. Human Resources and Recruitment: Assisting companies in understanding workplace trends, employer branding, and employee expectations. How does this Data Product fit into your broader data offering? As part of a larger data suite, our Consumer Review Data | Seller Ratings Data datasets complement financial, operational, and market data. They add a valuable dimension to understanding a company's internal dynamics, which can significantly impact its market performance and growth potential. Integrating these datasets with other data types provides a comprehensive toolkit for stakeholders looking for a multi-faceted analysis of companies. Unlock unparalleled insights with wrapped.io's datasets, a rich compilation that spans Employee Review Data, Consumer Review Data, Company Data, Product Review Data and Web Scraping Data. More about us: www.wrapped.io
提供机构:
Wrapped.io
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国食物成分数据库

食物成分数据比较准确而详细地描述农作物、水产类、畜禽肉类等人类赖以生存的基本食物的品质和营养成分含量。它是一个重要的我国公共卫生数据和营养信息资源,是提供人类基本需求和基本社会保障的先决条件;也是一个国家制定相关法规标准、实施有关营养政策、开展食品贸易和进行营养健康教育的基础,兼具学术、经济、社会等多种价值。 本数据集收录了基于2002年食物成分表的1506条食物的31项营养成分(含胆固醇)数据,657条食物的18种氨基酸数据、441条食物的32种脂肪酸数据、130条食物的碘数据、114条食物的大豆异黄酮数据。

国家人口健康科学数据中心 收录

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

Awesome JSON Datasets

一个精选的无需认证的JSON数据集列表。

github 收录

PDT Dataset

PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。

arXiv 收录

koen430/relevant_selected_stock_news

该数据集包含通过GPT-3.5-turbo筛选出的新闻文章,旨在用于微调大型语言模型,以预测新闻发布后的股票价格变动。数据集包括多个特征,如股票代码、提示、文本、URL、结果、相关性、令牌计数等,并分为训练集、验证集和测试集。

hugging_face 收录