airport-codes|航空数据数据集|地理信息数据集
收藏数据集概述
数据集名称
- 机场代码数据集
数据来源
- 原始数据下载自ourairports.com,该网站从多个不同来源编译数据。
数据更新频率
- 数据每日更新。
数据内容
- 文件路径:"data/airport-codes.csv"
- 包含所有机场代码及其属性,如机场位置识别信息和其他相关代码(IATA、本地代码等)。
数据处理
- 使用Python 3.6或更高版本及dataflows库进行数据处理。
- 处理步骤包括:
- 合并"latitude_deg"和"longitude_deg"列至"coordinates"列。
- 移除"id", "scheduled_service", "home_link", "wikipedia_link", "keywords"列。
自动化更新
- 每日更新的机场代码数据包可在datahub.io找到:https://datahub.io/core/airport-codes
许可证
- 数据包根据公共领域捐赠和许可证(PDDL)授权使用。

LIDC-IDRI
LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。
OpenDataLab 收录
ReferCOCO数据集
ReferCOCO数据集包括refcoco、refcoco+和refcocog三个子集,用于视觉定位任务。数据集包含图像和对应的描述性文本,用于训练和测试模型识别图像中特定对象的能力。
github 收录
TongueDx Dataset
TongueDx数据集是一个专为远程舌诊研究设计的综合性舌象图像数据集,由香港理工大学和新加坡管理大学的研究团队创建。该数据集包含5109张图像,涵盖了多种环境条件下的舌象,图像通过智能手机和笔记本电脑摄像头采集,具有较高的多样性和代表性。数据集不仅包含舌象图像,还提供了详细的舌面属性标注,如舌色、舌苔厚度等,并附有受试者的年龄、性别等人口统计信息。数据集的创建过程包括图像采集、舌象分割、标准化处理和多标签标注,旨在解决远程医疗中舌诊图像质量不一致的问题。该数据集的应用领域主要集中在远程医疗和中医诊断,旨在通过自动化技术提高舌诊的准确性和可靠性。
arXiv 收录
VisDrone2019
VisDrone2019数据集由AISKYEYE团队在天津大学机器学习和数据挖掘实验室收集,包含288个视频片段共261,908帧和10,209张静态图像。数据集覆盖了中国14个不同城市的城市和乡村环境,包括行人、车辆、自行车等多种目标,以及稀疏和拥挤场景。数据集使用不同型号的无人机在各种天气和光照条件下收集,手动标注了超过260万个目标边界框,并提供了场景可见性、对象类别和遮挡等重要属性。
github 收录
中国气象数据
本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。
github 收录