five

Data from: Tasting novel foods and selecting nutrient content in a highly successful ecological invader, the common myna|生态入侵数据集|食物选择数据集

收藏
DataONE2017-08-29 更新2024-06-26 收录
生态入侵
食物选择
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Invasion success is dependent on the ability of a species to discover and exploit novel food resources. Within this context, individuals must be willing to taste novel foods. They must also be capable of evaluating the nutritional content of new foods, and selecting their relative intake in order to fulfil their nutritional needs. Whereas the former capacity is well studied, little is known about the latter capacity. First, using the common myna as a model avian invader species, we quantified the willingness of mynas to taste novel foods relative to familiar ones. Mynas readily tasted high protein (HP) novel foods and consumed them in higher quantities compared to a familiar food. Data showed that at three different levels – mixes, ingredients and macronutrients – intake could not be explained by a random model. In experiment 2, we confirmed that mynas were making their selection based on protein (P) content rather than a selection for novelty per se. When given the choice of three equally unfamiliar foods, mynas again ate disproportionately from the high protein relative to high lipid and high carbohydrate foods. Analysis revealed that mynas consumed amounts of protein that were closer to the ones in their natural diet. Finally, in experiment 3, we measured inter-individual variation in innovation and exploration propensities, and examined associations with inter-individual variation in consumption of specific macronutrients. This analysis revealed that individuals that selected HP pellets were more exploratory and individuals that selected HC pellets were quicker to solve the innovative foraging task. These findings indicate that not only the willingness to taste novel foods, but also the capacity to evaluate their nutritional content, might be central to the myna's substantial ecological success.
创建时间:
2017-08-29
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国气象数据

本数据集包含了中国2023年1月至11月的气象数据,包括日照时间、降雨量、温度、风速等关键数据。通过这些数据,可以深入了解气象现象对不同地区的影响,并通过可视化工具揭示中国的气温分布、降水情况、风速趋势等。

github 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录

VoxBox

VoxBox是一个大规模语音语料库,由多样化的开源数据集构建而成,用于训练文本到语音(TTS)系统。

github 收录

WideIRSTD Dataset

WideIRSTD数据集包含七个公开数据集:SIRST-V2、IRSTD-1K、IRDST、NUDT-SIRST、NUDT-SIRST-Sea、NUDT-MIRSDT、Anti-UAV,以及由国防科技大学团队开发的数据集,包括模拟陆基和太空基数据,以及真实手动标注的太空基数据。数据集包含具有各种目标形状(如点目标、斑点目标、扩展目标)、波长(如近红外、短波红外和热红外)、图像分辨率(如256、512、1024、3200等)的图像,以及不同的成像系统(如陆基、空基和太空基成像系统)。

github 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录