five

Demographic Audiences|受众细分数据集|广告定位数据集

收藏
Databricks2024-05-09 收录
受众细分
广告定位
下载链接:
https://marketplace.databricks.com/details/48bd7dde-74c1-4357-9e2f-2e9183cc46fb/InMarket_Demographic-Audiences
下载链接
链接失效反馈
资源简介:
In order to reach new customers, you need to identify the key characteristics of your best customers. InMarket’s Demographic Audiences target your ideal customers based on who they are as an individual. You can also use our Audiences to better understand your data. **Why InMarket Audiences?** Access 1,000+ turnkey, multidimensional audience segments applicable for any campaign strategy. The InMarket data universe is composed of nearly 200M, SDK-based monthly active users – or 77% of the adult US population. – Unrivaled performance–up to 3.7x higher than industry benchmarks – Precise location, purchase, and intent data collected via vast direct InMarket SDK mobile app integrations and InMarket’s Owned & Operated app portfolio – All data is normalized to account for regular device updates and enhanced predictability – CCPA, GDPR, and HIPAA compliant while maintaining deep location attributes like visit frequency and dwell time – Verified for scale, always delivering the highest level of accuracy and precision **How We Do It** With advanced data science and machine learning capabilities, InMarket combines our unique first-party consumer data with up to 1,000 trusted third-party attributes to guarantee scale and targeting across all your multidimensional campaigns. With InMarket’s acquisition of NinthDecimal, InMarket’s Syndicated Taxonomy is more comprehensive than ever before. By combining the best of both data collection methodologies, InMarket delivers Audiences built upon the highest data quality standards–ensuring you hit your ideal customer, every time! **Demographic Audiences** Increase customer satisfaction and loyalty through personalized targeting strategies! To build these segments, we use privacy-compliant methods and partnerships to collect current and historical public county records that we then convert into specific identifiers for owner occupation, household income, age, education, and more. **Table Sample:** - Device_ID [MAIDs] - Audience_NAME **Demographics Audiences Sample Fields Include:** - Device_ID - Demographic > Age > 35 - 44 - Demographic > Age > 25 - 34 - Demographic > Age > 18 - 24 - Demographic > HHI > $50K-$100K - Demographic > HHI > $250Kplus - Demographic > HHI > $150K-$250K - Ethnicity_Hispanics - Ethnicity_AsianIndian - Ethnicity_AsianAmerican - ChildrenInHousehold_2-3 - LifeStagesGenerations_Expecting Parents - LifeStagesGenerations _Retirees Check out the documentation for the full list of InMarket Audiences. **Business Needs** ***Accelerating Advertising Revenue*** InMarket uses privacy-compliant methods and partnerships to collect current and historical public county records that we then convert into specific identifiers for owner occupation, household income, age, education, and more ***Audience Segmentation*** Target and measure your ideal customers based on where they go and what they do in the real world. **Supported Use Cases** - Strengthen loyalty and competitive conquesting - Discover new high-intent consumers - Drive brand awareness and engage in real time - Maximize consumer lifetime value **Audiences Catalog:** https://go.inmarket.com/inmarket-audiences-catalog **Taxonomy:** https://go.inmarket.com/inmarket-audience-taxonomy **Note:** Data is delivered with RampIDs. Click “Request access” to contact LiveRamp, if you are not RampID enabled.
提供机构:
InMarket
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

CHARLS

中国健康与养老追踪调查(CHARLS)数据集,旨在收集反映中国45岁及以上中老年人家庭和个人的高质量微观数据,用以分析人口老龄化问题,内容包括健康状况、经济状况、家庭结构和社会支持等。

charls.pku.edu.cn 收录

VisDrone2019

VisDrone2019数据集由AISKYEYE团队在天津大学机器学习和数据挖掘实验室收集,包含288个视频片段共261,908帧和10,209张静态图像。数据集覆盖了中国14个不同城市的城市和乡村环境,包括行人、车辆、自行车等多种目标,以及稀疏和拥挤场景。数据集使用不同型号的无人机在各种天气和光照条件下收集,手动标注了超过260万个目标边界框,并提供了场景可见性、对象类别和遮挡等重要属性。

github 收录

PDT Dataset

PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。

arXiv 收录

Oxford 102 Flowers

牛津102花卉数据集是一个主要用于图像分类的花卉集合数据集,分为102个类别,共102种花卉,其中每个类别包含40到258幅图像。 该数据集由牛津大学工程科学系2008年在相关论文 “大量类别上的自动花分类” 中发布

OpenDataLab 收录