Military Balance Dataset|军事分析数据集|国际关系数据集
收藏
- 首次发表《Military Balance》年度报告,该报告由国际战略研究所(IISS)发布,成为全球军事力量对比的重要参考资料。
- 《Military Balance》报告首次引入详细的数据集,涵盖各国军事力量的详细统计数据,包括军队规模、装备数量等。
- 数据集开始包括冷战结束后的新军事动态,特别是东欧和苏联地区的军事力量变化。
- 数据集进一步扩展,涵盖更多国家和地区的军事信息,并开始引入网络和信息战等新兴军事领域的数据。
- 数据集的更新频率增加,每年发布一次,提供最新的全球军事力量对比数据,成为政策制定者和研究者的重要参考。
- 数据集在数字化和可视化方面取得显著进展,提供在线访问和交互式图表,增强了数据的可读性和应用性。
- 1The Military Balance in the Cold War: A Quantitative ApproachInternational Institute for Strategic Studies · 2012年
- 2The Military Balance in the Asia-Pacific Region: A Comparative AnalysisInternational Institute for Strategic Studies · 2020年
- 3The Impact of Military Expenditures on Economic Growth: Evidence from the Military Balance DatasetElsevier · 2018年
- 4Military Balance and Regional Security: A Case Study of the Middle EastInternational Institute for Strategic Studies · 2019年
- 5The Role of Military Balance in International Relations: A Quantitative AnalysisInternational Institute for Strategic Studies · 2021年
基于站点观测的中国1km土壤湿度日尺度数据集(2000-2022)
本研究提供了中国范围1km高质量的土壤湿度数据集-SMCI1.0(Soil Moisture of China by in situ data, version 1.0),SMCI1.0是包含2000-2022年、日尺度、以10厘米为间隔10层深度(10-100cm)的高时空分辨率土壤湿度,数据单位为0.001m³/m³,缺失值为-999,投影为WGS1984。该数据集是以中国气象局提供的1,648个站点观测10层土壤湿度作为基准,使用ERA5_Land气象强迫数据、叶面积指数(LAI)、土地覆盖类型(Landtypes)、地形(DEM)和土壤特性(Soil properties)作为协变量,通过机器学习方式获得。本研究进行了两组实验以验证SMCI1.0的精度,时间尺度上:ubRMSE为0.041-0.052,R为0.883-0.919;空间尺度上:ubRMSE为0.045-0.051,R为0.866-0.893。 由于SMCI1.0是基于实地观测的土壤湿度,它可以作为现有基于模型和卫星数据集的有效补充。该数据产品可用于各种水文、气象、生态分析和建模,尤其在需要高质量、高分辨率土壤湿度的应用上至关重要。有关数据集的引用及详细描述,请阅读说明文档。为便于使用,本研究提供了两种不同分辨率的版本:30 秒(~1km)和0.1度(~9km)。
国家青藏高原科学数据中心 收录
PCLT20K
PCLT20K数据集是由湖南大学等机构创建的一个大规模PET-CT肺癌肿瘤分割数据集,包含来自605名患者的21,930对PET-CT图像,所有图像都带有高质量的像素级肿瘤区域标注。该数据集旨在促进医学图像分割研究,特别是在PET-CT图像中肺癌肿瘤的分割任务。
arXiv 收录
YOLO Drone Detection Dataset
为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。
github 收录
Amazon Product Data
该数据集包含亚马逊产品的详细信息,包括产品规格、价格、折扣、客户评价和用户评分等字段。
github 收录
PDT Dataset
PDT数据集是由山东计算机科学中心(国家超级计算济南中心)和齐鲁工业大学(山东省科学院)联合开发的无人机目标检测数据集,专门用于检测树木病虫害。该数据集包含高分辨率和低分辨率两种版本,共计5775张图像,涵盖了健康和受病虫害影响的松树图像。数据集的创建过程包括实地采集、数据预处理和人工标注,旨在为无人机在农业中的精准喷洒提供高精度的目标检测支持。PDT数据集的应用领域主要集中在农业无人机技术,旨在提高无人机在植物保护中的目标识别精度,解决传统检测模型在实际应用中的不足。
arXiv 收录