five

CELLO|大型语言模型数据集|指令理解数据集

收藏
github2023-09-01 更新2025-02-07 收录
大型语言模型
指令理解
下载链接:
https://github.com/Abbey4799/CELLO
下载链接
链接失效反馈
资源简介:
CELLO数据集包含523条英语指令,这些指令均来源于真实场景中人工整理的数据。其主要目标是衡量大型语言模型(LLMs)对复杂指令的理解能力。评估内容涵盖十个子任务,涉及复杂任务描述和复杂输入相关方面。评估方法采用代码评估。

The CELLO dataset encompasses 523 English instructions, meticulously curated from real-world scenarios. Its primary objective is to evaluate the ability of Large Language Models (LLMs) to understand complex instructions. The evaluation encompasses ten subtasks, covering aspects of complex task descriptions and complex inputs. The assessment method employed is code-based evaluation.
提供机构:
复旦大学
创建时间:
2023-09-01
原始信息汇总

CELLO数据集概述

数据集简介

  • CELLO是一个用于系统评估大语言模型复杂指令理解能力的基准测试工具(AAAI 2024)。
  • 主要特点:
    • 设计了8个复杂指令特征
    • 从真实场景构建综合评估数据集
    • 建立了4个评估标准并开发了相应指标
    • 比较了中英文导向模型在复杂指令理解上的表现

数据内容

  • 数据位置:data/
  • 所有样本均已匿名化处理

评估系统

评分系统

引用格式

bibtex @inproceedings{he2024can, title={Can Large Language Models Understand Real-World Complex Instructions?}, author={He, Qianyu and Zeng, Jie and Huang, Wenhao and Chen, Lina and Xiao, Jin and He, Qianxi and Zhou, Xunzhe and Liang, Jiaqing and Xiao, Yanghua}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={38}, number={16}, pages={18188--18196}, year={2024} }

AI搜集汇总
数据集介绍
main_image_url
构建方式
CELLO数据集的构建基于对复杂指令理解能力的系统性评估需求,设计者从现实场景中提取了八种复杂指令特征,构建了一个全面的评估数据集。该数据集通过精心设计的四种评估标准和相应度量方法,弥补了现有评估方法的不足,确保了评估的全面性和精确性。
使用方法
CELLO数据集的使用方法包括环境配置、模型评估和评分系统。用户首先需通过conda创建虚拟环境并安装依赖库,随后可通过提供的脚本对指定模型进行评估。评估结果和评分结果分别存储在特定文件夹中,用户可根据需求进一步分析和比较不同模型的表现。
背景与挑战
背景概述
CELLO数据集是由Qianyu He等研究人员于2024年提出的,旨在系统评估大语言模型(LLMs)在理解复杂指令方面的能力。该数据集的设计基于现实场景,涵盖了八种复杂指令特征,并构建了全面的评估体系。通过引入四项评估标准和相应的度量方法,CELLO弥补了现有评估方法的不足,如偏差过大或粒度过于粗糙等问题。该数据集在AAAI 2024会议上发布,对推动大语言模型在复杂指令理解领域的研究具有重要意义。
当前挑战
CELLO数据集面临的挑战主要体现在两个方面。首先,复杂指令的理解本身具有高度多样性和模糊性,如何设计能够全面覆盖这些特征的评估标准是一个关键难题。其次,在数据集的构建过程中,如何从真实场景中提取具有代表性的复杂指令样本,并确保数据的多样性和平衡性,也是一项艰巨的任务。此外,现有的评估方法往往存在偏差或过于严格的问题,CELLO需要开发新的度量标准以更准确地反映模型的性能。这些挑战共同构成了CELLO数据集在推动大语言模型研究中的重要障碍。
常用场景
经典使用场景
CELLO数据集主要用于评估大型语言模型在处理复杂指令时的理解能力。通过设计八种复杂指令特征,并从真实场景中构建全面的评估数据集,CELLO为研究者提供了一个系统化的工具,用于测试和比较不同语言模型在复杂指令理解上的表现。
解决学术问题
CELLO数据集解决了当前评估指标在复杂指令理解任务中存在的不足、偏见或过于严格的问题。通过建立四个评估标准并开发相应的度量方法,CELLO为学术界提供了一个更为精确和细粒度的评估框架,帮助研究者更好地理解和改进语言模型在复杂指令理解上的能力。
实际应用
在实际应用中,CELLO数据集可以用于优化和提升智能助手、聊天机器人等自然语言处理系统的性能。通过评估和改进模型在复杂指令理解上的表现,这些系统能够更好地满足用户需求,提供更为精准和高效的服务。
数据集最近研究
最新研究方向
在自然语言处理领域,随着大语言模型(LLMs)的快速发展,如何系统评估这些模型在复杂指令理解方面的能力成为研究热点。CELLO数据集应运而生,旨在通过设计八种复杂指令特征,构建一个来自真实场景的全面评估数据集。该数据集不仅建立了四项评估标准,并开发了相应的度量指标,以弥补现有评估方法的不足和偏差。通过广泛的实验,CELLO比较了中英文导向模型在复杂指令理解上的表现,为未来大语言模型的优化和应用提供了重要参考。这一研究方向的推进,不仅提升了模型在实际应用中的可靠性,也为多语言环境下的智能系统开发奠定了坚实基础。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

中国裁判文书网

中国裁判文书网是中国最高人民法院设立的官方网站,旨在公开各级法院的裁判文书。该数据集包含了大量的法律文书,如判决书、裁定书、调解书等,涵盖了民事、刑事、行政、知识产权等多个法律领域。

wenshu.court.gov.cn 收录

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

Tropicos

Tropicos是一个全球植物名称数据库,包含超过130万种植物的名称、分类信息、分布数据、图像和参考文献。该数据库由密苏里植物园维护,旨在为植物学家、生态学家和相关领域的研究人员提供全面的植物信息。

www.tropicos.org 收录

UniProt

UniProt(Universal Protein Resource)是全球公认的蛋白质序列与功能信息权威数据库,由欧洲生物信息学研究所(EBI)、瑞士生物信息学研究所(SIB)和美国蛋白质信息资源中心(PIR)联合运营。该数据库以其广度和深度兼备的蛋白质信息资源闻名,整合了实验验证的高质量数据与大规模预测的自动注释内容,涵盖从分子序列、结构到功能的全面信息。UniProt核心包括注释详尽的UniProtKB知识库(分为人工校验的Swiss-Prot和自动生成的TrEMBL),以及支持高效序列聚类分析的UniRef和全局蛋白质序列归档的UniParc。其卓越的数据质量和多样化的检索工具,为基础研究和药物研发提供了无可替代的支持,成为生物学研究中不可或缺的资源。

www.uniprot.org 收录