five

Data from: Widespread position-specific conservation of synonymous rare codons within coding sequences|密码子使用数据集|蛋白质功能数据集

收藏
DataONE2017-07-24 更新2024-06-26 收录
密码子使用
蛋白质功能
下载链接:
https://search.dataone.org/view/null
下载链接
链接失效反馈
资源简介:
Synonymous rare codons are considered to be sub-optimal for gene expression because they are translated more slowly than common codons. Yet surprisingly, many protein coding sequences include large clusters of synonymous rare codons. Rare codons at the 5’ terminus of coding sequences have been shown to increase translational efficiency. Although a general functional role for synonymous rare codons farther within coding sequences has not yet been established, several recent reports have identified rare-to-common synonymous codon substitutions that impair folding of the encoded protein. Here we test the hypothesis that although the usage frequencies of synonymous codons change from organism to organism, codon rarity will be conserved at specific positions in a set of homologous coding sequences, for example to tune translation rate without altering a protein sequence. Such conservation of rarity–rather than specific codon identity–could coordinate co-translational folding of the encoded protein. We demonstrate that many rare codon cluster positions are indeed conserved within homologous coding sequences across diverse eukaryotic, bacterial, and archaeal species, suggesting they result from positive selection and have a functional role. Most conserved rare codon clusters occur within rather than between conserved protein domains, challenging the view that their primary function is to facilitate co-translational folding after synthesis of an autonomous structural unit. Instead, many conserved rare codon clusters separate smaller protein structural motifs within structural domains. These smaller motifs typically fold faster than an entire domain, on a time scale more consistent with translation rate modulation by synonymous codon usage. While proteins with conserved rare codon clusters are structurally and functionally diverse, they are enriched in functions associated with organism growth and development, suggesting an important role for synonymous codon usage in organism physiology. The identification of conserved rare codon clusters advances our understanding of distinct, functional roles for otherwise synonymous codons and enables experimental testing of the impact of synonymous codon usage on the production of functional proteins.
创建时间:
2017-07-24
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

PQAref

PQAref数据集是一个用于生物医学领域参考问答任务的数据集,旨在微调大型语言模型。该数据集包含三个部分:指令(问题)、摘要(从PubMed检索的相关摘要,包含PubMed ID、摘要标题和内容)和答案(预期答案,包含PubMed ID形式的参考)。数据集通过半自动方式创建,利用了PubMedQA数据集中的问题。

huggingface 收录

rag-datasets/rag-mini-bioasq

该数据集主要用于问答和句子相似性任务,涉及生物医学领域。数据集包含两个配置:text-corpus和question-answer-passages,分别对应不同的数据文件路径。数据集来源于BioASQ任务11b的训练数据集,并通过`generate.py`脚本生成了子集。

hugging_face 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

Breast Cancer Dataset

该项目专注于清理和转换一个乳腺癌数据集,该数据集最初由卢布尔雅那大学医学中心肿瘤研究所获得。目标是通过应用各种数据转换技术(如分类、编码和二值化)来创建一个可以由数据科学团队用于未来分析的精炼数据集。

github 收录

中国高分辨率高质量PM2.5数据集(2000-2023)

ChinaHighPM2.5数据集是中国高分辨率高质量近地表空气污染物数据集(ChinaHighAirPollutants, CHAP)中PM2.5数据集。该数据集利用人工智能技术,使用模式资料填补了卫星MODIS MAIAC AOD产品的空间缺失值,结合地基观测、大气再分析和排放清单等大数据生产得到2000年至今全国无缝隙地面PM2.5数据。数据十折交叉验证决定系数R2为0.92,均方根误差RMSE为10.76 µg/m3。主要范围为整个中国地区,空间分辨率为1 km,时间分辨率为日、月、年,单位为µg/m3。注意:该数据集持续更新,如需要更多数据,请发邮件联系作者(weijing_rs@163.com; weijing@umd.edu)。 数据文件中包含NC转GeoTiff的四种代码(Python、Matlab、IDL和R语言)nc2geotiff codes。

国家青藏高原科学数据中心 收录