five

MR-NIAH|自然语言处理数据集|对话系统数据集

收藏
魔搭社区2025-10-03 更新2025-03-15 收录
自然语言处理
对话系统
下载链接:
https://modelscope.cn/datasets/MiniMax/MR-NIAH
下载链接
链接失效反馈
资源简介:
# Multi-Round Needles-In-A-Haystack (MR-NIAH) Evaluation ## Overview Multi-Round Needles-In-A-Haystack (MR-NIAH) is an evaluation framework designed to assess long-context retrieval performance in large language models (LLMs). It serves as a crucial benchmark for retrieval tasks in long multi-turn dialogue contexts, revealing fundamental capabilities necessary for building lifelong companion AI assistants. MR-NIAH extends the vanilla k-M NIAH (Kamradt, 2023) by creating a more challenging variation specifically tailored to evaluate a model's ability to recall information from earlier parts of a conversation across multiple dialogue rounds. ## Motivation As LLMs are increasingly deployed in applications requiring long-term memory and contextual understanding across extended conversations, the ability to accurately retrieve specific information from earlier dialogue becomes critical. MR-NIAH addresses this need by providing a rigorous evaluation framework that: 1. Tests a model's ability to recall specific information from earlier in a conversation 2. Evaluates performance across varying context lengths (from 2K to 1M tokens) 3. Assesses recall accuracy at different positions within the conversation (25%, 50%, and 75%) 4. Provides a standardized benchmark for comparing different models and retrieval strategies ## Methodology ### Dataset Construction MR-NIAH constructs "haystacks" as history dialogues, where: 1. User queries are synthetic but explicit requests for event descriptions and creative writing 2. Each query and its corresponding response are injected at specific positions (25%, 50%, and 75%) of the conversation 3. In the final round, the user requests the model to repeat a specific response from one of the earlier requests 4. The haystacks span from 2K to 1M tokens (up to approximately 2000 interactions) ### Evaluation Metrics The evaluation focuses on the model's ability to accurately recall the requested information. Each ground truth response contains three core components, and the evaluation measures an adjusted recall score based on the model's ability to reproduce these components. The scoring is implemented in `score.py`, which: 1. Processes model responses 2. Compares them against ground truth responses 3. Calculates an adjusted recall score based on the presence of key components ## Dataset Structure The dataset is organized by language and token length: ``` data/ ├── english/ │ ├── 2048_tokens.jsonl │ ├── 10240_tokens.jsonl │ ├── ... │ └── 1024000_tokens.jsonl └── chinese/ ├── 2048_tokens.jsonl ├── 10240_tokens.jsonl ├── ... └── 1024000_tokens.jsonl ``` Each JSONL file contains evaluation examples with the following structure: ```json { "messages": [ {"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}, ... {"role": "user", "content": "Please repeat the [specific content] you mentioned earlier"} ], "label": "The expected response that should be recalled", "length_class": 2048 } ``` ## Usage ### Running Evaluations Please refer to our GitHub page https://github.com/MiniMax-AI/MiniMax-01/tree/main/evaluation/MR-NIAH. ### Interpreting Results The evaluation produces scores that indicate: - Overall recall performance across different context lengths - Performance at different injection points (25%, 50%, 75%) - Comparative performance against other models ## License This evaluation framework is released under the same license as the MiniMax-01 repository.
提供机构:
maas
创建时间:
2025-03-11
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域地面气象要素驱动数据集 v2.0(1951-2024)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 74 年(1951~2024 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 74 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。

国家青藏高原科学数据中心 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

THCHS-30

“THCHS30是由清华大学语音与语言技术中心(CSLT)发布的开放式汉语语音数据库。原始录音是2002年在清华大学国家重点实验室的朱晓燕教授的指导下,由王东完成的。清华大学计算机科学系智能与系统,原名“TCMSD”,意思是“清华连续普通话语音数据库”,时隔13年出版,由王东博士发起,并得到了教授的支持。朱小燕。我们希望为语音识别领域的新研究人员提供一个玩具数据库。因此,该数据库对学术用户完全免费。整个软件包包含建立中文语音识别所需的全套语音和语言资源系统。”

OpenDataLab 收录

全国兴趣点(POI)数据

  POI(Point of Interest),即兴趣点,一个POI可以是餐厅、超市、景点、酒店、车站、停车场等。兴趣点通常包含四方面信息,分别为名称、类别、坐标、分类。其中,分类一般有一级分类和二级分类,每个分类都有相应的行业的代码和名称一一对应。  POI包含的信息及其衍生信息主要包含三个部分:

CnOpenData 收录