five

Thermomonas haemolytica Busse et al. 2002

收藏
DataCite Commons2025-01-07 更新2025-05-06 收录
下载链接:
https://bacdive.dsmz.de/index.php?site=pdf_view&id=17574&doi=doi:10.13145/bacdive17574.20241212.9.2
下载链接
链接失效反馈
资源简介:
The range of data encompasses taxonomy, morphology, physiology, sampling and concomitant environmental conditions as well as molecular biology.
提供机构:
DSMZ
创建时间:
2024-12-16
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Population and Housing Census of 2007 - Ethiopia

Geographic coverage --------------------------- National coverage Analysis unit --------------------------- Household Person Housing unit Universe --------------------------- The census has counted people on dejure and defacto basis. The dejure population comprises all the persons who belong to a given area at a given time by virtue of usual residence, while under defacto approach people were counted as the residents of the place where they found. In the census, a person is said to be a usual resident of a household (and hence an area) if he/she has been residing in the household continuously for at least six months before the census day or intends to reside in the household for six months or longer. Thus, visitors are not included with the usual (dejure) population. Homeless persons were enumerated in the place where they spent the night on the enumeration day. The 2007 census counted foreign nationals who were residing in the city administration. On the other hand all Ethiopians living abroad were not counted. Kind of data --------------------------- Census/enumeration data [cen] Mode of data collection --------------------------- Face-to-face [f2f] Research instrument --------------------------- Two type sof questionnaires were used to collect census data: i) Short questionnaire ii) Long questionnaire Unlike the previous censuses, the contents of the short and long questionnaires were similar both for the urban and rural areas as well as for the entire city. But the short and the long questionnaires differ by the number of variables they contained. That is, the short questionnaire was used to collect basic data on population characteristics, such as population size, sex, age, language, ethnic group, religion, orphanhood and disability. Whereas the long questionnaire includes information on marital status, education, economic activity, migration, fertility, mortality, as well as housing stocks and conditions in addition to those questions contained in a short questionnaire.

catalog.ihsn.org 收录

中指数据库(物业版)

物业版解决物业企业“找项目”、“找行业和企业数据"的迫切需求,提供高效的市场拓展渠道、最新行业动态、竞品企业的多维度数据,助力企业科学决策。

西部数据交易中心 收录

中国劳动力动态调查

“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。

中国学术调查数据资料库 收录

中国区域地面气象要素驱动数据集 v2.0(1951-2020)

中国区域地面气象要素驱动数据集(China Meteorological Forcing Data,以下简称 CMFD)是为支撑中国区域陆面、水文、生态等领域研究而研发的一套高精度、高分辨率、长时间序列数据产品。本页面发布的 CMFD 2.0 包含了近地面气温、气压、比湿、全风速、向下短波辐射通量、向下长波辐射通量、降水率等气象要素,时间分辨率为 3 小时,水平空间分辨率为 0.1°,时间长度为 70 年(1951~2020 年),覆盖了 70°E~140°E,15°N~55°N 空间范围内的陆地区域。CMFD 2.0 融合了欧洲中期天气预报中心 ERA5 再分析数据与气象台站观测数据,并在辐射、降水数据产品中集成了采用人工智能技术制作的 ISCCP-ITP-CNN 和 TPHiPr 数据产品,其数据精度较 CMFD 的上一代产品有显著提升。 CMFD 历经十余年的发展,其间发布了多个重要版本。2019 年发布的 CMFD 1.6 是完全采用传统数据融合技术制作的最后一个 CMFD 版本,而本次发布的 CMFD 2.0 则是 CMFD 转向人工智能技术制作的首个版本。此版本与 1.6 版具有相同的时空分辨率和基础变量集,但在其它诸多方面存在大幅改进。除集成了采用人工智能技术制作的辐射和降水数据外,在制作 CMFD 2.0 的过程中,研发团队尽可能采用单一来源的再分析数据作为输入并引入气象台站迁址信息,显著缓解了 CMFD 1.6 中因多源数据拼接和气象台站迁址而产生的虚假气候突变。同时,CMFD 2.0 数据的时间长度从 CMFD 1.6 的 40 年大幅扩展到了 70 年,并将继续向后延伸。CMFD 2.0 的网格空间范围虽然与 CMFD 1.6 相同,但其有效数据扩展到了中国之外,能够更好地支持跨境区域研究。为方便用户使用,CMFD 2.0 还在基础变量集之外提供了若干衍生变量,包括近地面相对湿度、雨雪分离降水产品等。此外,CMFD 2.0 摒弃了 CMFD 1.6 中通过 scale_factor 和 add_offset 参数将实型数据化为整型数据的压缩技术,转而直接将实型数据压缩存储于 NetCDF4 格式文件中,从而消除了用户使用数据时进行解压换算的困扰。 本数据集原定版本号为 1.7,但鉴于本数据集从输入数据到研制技术都较上一代数据产品有了大幅的改变,故将其版本号重新定义为 2.0。CMFD 2.0 的数据内容与此前宣传的 CMFD 1.7 基本一致,仅对 1983 年 7 月以后的向下短/长波辐射通量数据进行了更新,以修正其长期趋势存在的问题。2021 年至 2024 年的 CMFD 数据正在制作中,计划于 2025 年上半年发布,从而使 CMFD 2.0 延伸至 2024 年底。

国家青藏高原科学数据中心 收录

cais/mmlu

--- annotations_creators: - no-annotation language_creators: - expert-generated language: - en license: - mit multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - original task_categories: - question-answering task_ids: - multiple-choice-qa paperswithcode_id: mmlu pretty_name: Measuring Massive Multitask Language Understanding language_bcp47: - en-US dataset_info: - config_name: abstract_algebra features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 49618.6654322746 num_examples: 100 - name: validation num_bytes: 5485.515349444808 num_examples: 11 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 17143 dataset_size: 57303.3562203159 - config_name: all features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 6967453 num_examples: 14042 - name: validation num_bytes: 763484 num_examples: 1531 - name: dev num_bytes: 125353 num_examples: 285 - name: auxiliary_train num_bytes: 161000625 num_examples: 99842 download_size: 51503402 dataset_size: 168856915 - config_name: anatomy features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 66985.19833357072 num_examples: 135 - name: validation num_bytes: 6981.5649902024825 num_examples: 14 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 28864 dataset_size: 76165.9387623697 - config_name: astronomy features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 75420.3714570574 num_examples: 152 - name: validation num_bytes: 7978.931417374265 num_examples: 16 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 39316 dataset_size: 85598.47831302814 - config_name: auxiliary_train features: - name: train struct: - name: answer dtype: int64 - name: choices sequence: string - name: question dtype: string - name: subject dtype: string splits: - name: train num_bytes: 161000625 num_examples: 99842 download_size: 47518592 dataset_size: 161000625 - config_name: business_ethics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 49618.6654322746 num_examples: 100 - name: validation num_bytes: 5485.515349444808 num_examples: 11 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 31619 dataset_size: 57303.3562203159 - config_name: clinical_knowledge features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 131489.4633955277 num_examples: 265 - name: validation num_bytes: 14461.813193990856 num_examples: 29 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 51655 dataset_size: 148150.45202811505 - config_name: college_biology features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 71450.87822247542 num_examples: 144 - name: validation num_bytes: 7978.931417374265 num_examples: 16 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 43017 dataset_size: 81628.98507844617 - config_name: college_chemistry features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 49618.6654322746 num_examples: 100 - name: validation num_bytes: 3989.4657086871325 num_examples: 8 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 26781 dataset_size: 55807.30657955822 - config_name: college_computer_science features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 49618.6654322746 num_examples: 100 - name: validation num_bytes: 5485.515349444808 num_examples: 11 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 41132 dataset_size: 57303.3562203159 - config_name: college_mathematics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 49618.6654322746 num_examples: 100 - name: validation num_bytes: 5485.515349444808 num_examples: 11 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 26779 dataset_size: 57303.3562203159 - config_name: college_medicine features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 85840.29119783506 num_examples: 173 - name: validation num_bytes: 10971.030698889615 num_examples: 22 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 56303 dataset_size: 99010.49733532117 - config_name: college_physics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 50611.0387409201 num_examples: 102 - name: validation num_bytes: 5485.515349444808 num_examples: 11 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 29539 dataset_size: 58295.7295289614 - config_name: computer_security features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 49618.6654322746 num_examples: 100 - name: validation num_bytes: 5485.515349444808 num_examples: 11 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 30150 dataset_size: 57303.3562203159 - config_name: conceptual_physics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 116603.86376584532 num_examples: 235 - name: validation num_bytes: 12965.76355323318 num_examples: 26 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 34968 dataset_size: 131768.802757675 - config_name: econometrics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 56565.27859279305 num_examples: 114 - name: validation num_bytes: 5984.198563030699 num_examples: 12 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 36040 dataset_size: 64748.652594420244 - config_name: electrical_engineering features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 71947.06487679818 num_examples: 145 - name: validation num_bytes: 7978.931417374265 num_examples: 16 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 26746 dataset_size: 82125.17173276893 - config_name: elementary_mathematics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 187558.555333998 num_examples: 378 - name: validation num_bytes: 20446.011757021555 num_examples: 41 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 54987 dataset_size: 210203.74252961605 - config_name: formal_logic features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 62519.518444666 num_examples: 126 - name: validation num_bytes: 6981.5649902024825 num_examples: 14 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 32884 dataset_size: 71700.25887346498 - config_name: global_facts features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 49618.6654322746 num_examples: 100 - name: validation num_bytes: 4986.8321358589155 num_examples: 10 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 19258 dataset_size: 56804.67300673001 - config_name: high_school_biology features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 153817.86284005127 num_examples: 310 - name: validation num_bytes: 15957.86283474853 num_examples: 32 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 78216 dataset_size: 171974.90111339628 - config_name: high_school_chemistry features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 100725.89082751745 num_examples: 203 - name: validation num_bytes: 10971.030698889615 num_examples: 22 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 45799 dataset_size: 113896.09696500355 - config_name: high_school_computer_science features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 49618.6654322746 num_examples: 100 - name: validation num_bytes: 4488.148922273024 num_examples: 9 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 39072 dataset_size: 56305.989793144116 - config_name: high_school_european_history features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 81870.79796325309 num_examples: 165 - name: validation num_bytes: 8976.297844546049 num_examples: 18 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 196270 dataset_size: 93046.27124639563 - config_name: high_school_geography features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 98244.95755590372 num_examples: 198 - name: validation num_bytes: 10971.030698889615 num_examples: 22 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 38255 dataset_size: 111415.16369338983 - config_name: high_school_government_and_politics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 95764.02428428999 num_examples: 193 - name: validation num_bytes: 10472.347485303722 num_examples: 21 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 52963 dataset_size: 108435.5472081902 - config_name: high_school_macroeconomics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 193512.79518587096 num_examples: 390 - name: validation num_bytes: 21443.378184193338 num_examples: 43 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 68758 dataset_size: 217155.34880866078 - config_name: high_school_mathematics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 133970.39666714144 num_examples: 270 - name: validation num_bytes: 14461.813193990856 num_examples: 29 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 45210 dataset_size: 150631.38529972878 - config_name: high_school_microeconomics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 118092.42372881356 num_examples: 238 - name: validation num_bytes: 12965.76355323318 num_examples: 26 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 49885 dataset_size: 133257.36272064323 - config_name: high_school_physics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 74924.18480273466 num_examples: 151 - name: validation num_bytes: 8477.614630960157 num_examples: 17 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 45483 dataset_size: 85600.9748722913 - config_name: high_school_psychology features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 270421.7266058966 num_examples: 545 - name: validation num_bytes: 29920.992815153495 num_examples: 60 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 113158 dataset_size: 302541.8948596466 - config_name: high_school_statistics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 107176.31733371314 num_examples: 216 - name: validation num_bytes: 11469.713912475507 num_examples: 23 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 74924 dataset_size: 120845.20668478514 - config_name: high_school_us_history features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 101222.0774818402 num_examples: 204 - name: validation num_bytes: 10971.030698889615 num_examples: 22 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 200043 dataset_size: 114392.2836193263 - config_name: high_school_world_history features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 117596.23707449081 num_examples: 237 - name: validation num_bytes: 12965.76355323318 num_examples: 26 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 250302 dataset_size: 132761.17606632048 - config_name: human_aging features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 110649.62391397236 num_examples: 223 - name: validation num_bytes: 11469.713912475507 num_examples: 23 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 41196 dataset_size: 124318.51326504436 - config_name: human_sexuality features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 65000.451716279735 num_examples: 131 - name: validation num_bytes: 5984.198563030699 num_examples: 12 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 32533 dataset_size: 73183.82571790692 - config_name: international_law features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 60038.58517305227 num_examples: 121 - name: validation num_bytes: 6482.88177661659 num_examples: 13 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 41592 dataset_size: 68720.64238826535 - config_name: jurisprudence features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 53588.15866685657 num_examples: 108 - name: validation num_bytes: 5485.515349444808 num_examples: 11 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 33578 dataset_size: 61272.84945489787 - config_name: logical_fallacies features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 80878.4246546076 num_examples: 163 - name: validation num_bytes: 8976.297844546049 num_examples: 18 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 33669 dataset_size: 92053.89793775014 - config_name: machine_learning features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 55572.90528414756 num_examples: 112 - name: validation num_bytes: 5485.515349444808 num_examples: 11 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 31121 dataset_size: 63257.596072188855 - config_name: management features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 51107.225395242844 num_examples: 103 - name: validation num_bytes: 5485.515349444808 num_examples: 11 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 22828 dataset_size: 58791.91618328414 - config_name: marketing features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 116107.67711152257 num_examples: 234 - name: validation num_bytes: 12467.08033964729 num_examples: 25 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 49747 dataset_size: 130773.93288976635 - config_name: medical_genetics features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 49618.6654322746 num_examples: 100 - name: validation num_bytes: 5485.515349444808 num_examples: 11 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 25775 dataset_size: 57303.3562203159 - config_name: miscellaneous features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 388514.15033471014 num_examples: 783 - name: validation num_bytes: 42886.756368386676 num_examples: 86 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 115097 dataset_size: 433600.08214169333 - config_name: moral_disputes features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 171680.58239567012 num_examples: 346 - name: validation num_bytes: 18949.96211626388 num_examples: 38 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 76043 dataset_size: 192829.71995053047 - config_name: moral_scenarios features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 444087.05561885773 num_examples: 895 - name: validation num_bytes: 49868.32135858916 num_examples: 100 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 109869 dataset_size: 496154.5524160434 - config_name: nutrition features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 151833.1162227603 num_examples: 306 - name: validation num_bytes: 16456.54604833442 num_examples: 33 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 69050 dataset_size: 170488.8377096912 - config_name: philosophy features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 154314.04949437402 num_examples: 311 - name: validation num_bytes: 16955.229261920314 num_examples: 34 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 61912 dataset_size: 173468.45419489083 - config_name: prehistory features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 160764.47600056973 num_examples: 324 - name: validation num_bytes: 17453.912475506204 num_examples: 35 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 68826 dataset_size: 180417.5639146724 - config_name: professional_accounting features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 139924.6365190144 num_examples: 282 - name: validation num_bytes: 15459.179621162639 num_examples: 31 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 87297 dataset_size: 157582.99157877354 - config_name: professional_law features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 761150.3277310925 num_examples: 1534 - name: validation num_bytes: 84776.14630960157 num_examples: 170 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 1167828 dataset_size: 848125.6494792906 - config_name: professional_medicine features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 134962.7699757869 num_examples: 272 - name: validation num_bytes: 15459.179621162639 num_examples: 31 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 153242 dataset_size: 152621.12503554605 - config_name: professional_psychology features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 303666.2324455206 num_examples: 612 - name: validation num_bytes: 34409.14173742652 num_examples: 69 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 159357 dataset_size: 340274.5496215436 - config_name: public_relations features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 54580.53197550207 num_examples: 110 - name: validation num_bytes: 5984.198563030699 num_examples: 12 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 31500 dataset_size: 62763.90597712925 - config_name: security_studies features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 121565.73030907278 num_examples: 245 - name: validation num_bytes: 13464.446766819072 num_examples: 27 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 140258 dataset_size: 137229.35251448833 - config_name: sociology features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 99733.51751887196 num_examples: 201 - name: validation num_bytes: 10971.030698889615 num_examples: 22 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 56480 dataset_size: 112903.72365635807 - config_name: us_foreign_policy features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 49618.6654322746 num_examples: 100 - name: validation num_bytes: 5485.515349444808 num_examples: 11 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 29027 dataset_size: 57303.3562203159 - config_name: virology features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 82366.98461757584 num_examples: 166 - name: validation num_bytes: 8976.297844546049 num_examples: 18 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 38229 dataset_size: 93542.45790071838 - config_name: world_religions features: - name: question dtype: string - name: subject dtype: string - name: choices sequence: string - name: answer dtype: class_label: names: '0': A '1': B '2': C '3': D splits: - name: test num_bytes: 84847.91788918957 num_examples: 171 - name: validation num_bytes: 9474.98105813194 num_examples: 19 - name: dev num_bytes: 2199.1754385964914 num_examples: 5 download_size: 27165 dataset_size: 96522.07438591801 configs: - config_name: abstract_algebra data_files: - split: test path: abstract_algebra/test-* - split: validation path: abstract_algebra/validation-* - split: dev path: abstract_algebra/dev-* - config_name: all data_files: - split: test path: all/test-* - split: validation path: all/validation-* - split: dev path: all/dev-* - split: auxiliary_train path: all/auxiliary_train-* - config_name: anatomy data_files: - split: test path: anatomy/test-* - split: validation path: anatomy/validation-* - split: dev path: anatomy/dev-* - config_name: astronomy data_files: - split: test path: astronomy/test-* - split: validation path: astronomy/validation-* - split: dev path: astronomy/dev-* - config_name: auxiliary_train data_files: - split: train path: auxiliary_train/train-* - config_name: business_ethics data_files: - split: test path: business_ethics/test-* - split: validation path: business_ethics/validation-* - split: dev path: business_ethics/dev-* - config_name: clinical_knowledge data_files: - split: test path: clinical_knowledge/test-* - split: validation path: clinical_knowledge/validation-* - split: dev path: clinical_knowledge/dev-* - config_name: college_biology data_files: - split: test path: college_biology/test-* - split: validation path: college_biology/validation-* - split: dev path: college_biology/dev-* - config_name: college_chemistry data_files: - split: test path: college_chemistry/test-* - split: validation path: college_chemistry/validation-* - split: dev path: college_chemistry/dev-* - config_name: college_computer_science data_files: - split: test path: college_computer_science/test-* - split: validation path: college_computer_science/validation-* - split: dev path: college_computer_science/dev-* - config_name: college_mathematics data_files: - split: test path: college_mathematics/test-* - split: validation path: college_mathematics/validation-* - split: dev path: college_mathematics/dev-* - config_name: college_medicine data_files: - split: test path: college_medicine/test-* - split: validation path: college_medicine/validation-* - split: dev path: college_medicine/dev-* - config_name: college_physics data_files: - split: test path: college_physics/test-* - split: validation path: college_physics/validation-* - split: dev path: college_physics/dev-* - config_name: computer_security data_files: - split: test path: computer_security/test-* - split: validation path: computer_security/validation-* - split: dev path: computer_security/dev-* - config_name: conceptual_physics data_files: - split: test path: conceptual_physics/test-* - split: validation path: conceptual_physics/validation-* - split: dev path: conceptual_physics/dev-* - config_name: econometrics data_files: - split: test path: econometrics/test-* - split: validation path: econometrics/validation-* - split: dev path: econometrics/dev-* - config_name: electrical_engineering data_files: - split: test path: electrical_engineering/test-* - split: validation path: electrical_engineering/validation-* - split: dev path: electrical_engineering/dev-* - config_name: elementary_mathematics data_files: - split: test path: elementary_mathematics/test-* - split: validation path: elementary_mathematics/validation-* - split: dev path: elementary_mathematics/dev-* - config_name: formal_logic data_files: - split: test path: formal_logic/test-* - split: validation path: formal_logic/validation-* - split: dev path: formal_logic/dev-* - config_name: global_facts data_files: - split: test path: global_facts/test-* - split: validation path: global_facts/validation-* - split: dev path: global_facts/dev-* - config_name: high_school_biology data_files: - split: test path: high_school_biology/test-* - split: validation path: high_school_biology/validation-* - split: dev path: high_school_biology/dev-* - config_name: high_school_chemistry data_files: - split: test path: high_school_chemistry/test-* - split: validation path: high_school_chemistry/validation-* - split: dev path: high_school_chemistry/dev-* - config_name: high_school_computer_science data_files: - split: test path: high_school_computer_science/test-* - split: validation path: high_school_computer_science/validation-* - split: dev path: high_school_computer_science/dev-* - config_name: high_school_european_history data_files: - split: test path: high_school_european_history/test-* - split: validation path: high_school_european_history/validation-* - split: dev path: high_school_european_history/dev-* - config_name: high_school_geography data_files: - split: test path: high_school_geography/test-* - split: validation path: high_school_geography/validation-* - split: dev path: high_school_geography/dev-* - config_name: high_school_government_and_politics data_files: - split: test path: high_school_government_and_politics/test-* - split: validation path: high_school_government_and_politics/validation-* - split: dev path: high_school_government_and_politics/dev-* - config_name: high_school_macroeconomics data_files: - split: test path: high_school_macroeconomics/test-* - split: validation path: high_school_macroeconomics/validation-* - split: dev path: high_school_macroeconomics/dev-* - config_name: high_school_mathematics data_files: - split: test path: high_school_mathematics/test-* - split: validation path: high_school_mathematics/validation-* - split: dev path: high_school_mathematics/dev-* - config_name: high_school_microeconomics data_files: - split: test path: high_school_microeconomics/test-* - split: validation path: high_school_microeconomics/validation-* - split: dev path: high_school_microeconomics/dev-* - config_name: high_school_physics data_files: - split: test path: high_school_physics/test-* - split: validation path: high_school_physics/validation-* - split: dev path: high_school_physics/dev-* - config_name: high_school_psychology data_files: - split: test path: high_school_psychology/test-* - split: validation path: high_school_psychology/validation-* - split: dev path: high_school_psychology/dev-* - config_name: high_school_statistics data_files: - split: test path: high_school_statistics/test-* - split: validation path: high_school_statistics/validation-* - split: dev path: high_school_statistics/dev-* - config_name: high_school_us_history data_files: - split: test path: high_school_us_history/test-* - split: validation path: high_school_us_history/validation-* - split: dev path: high_school_us_history/dev-* - config_name: high_school_world_history data_files: - split: test path: high_school_world_history/test-* - split: validation path: high_school_world_history/validation-* - split: dev path: high_school_world_history/dev-* - config_name: human_aging data_files: - split: test path: human_aging/test-* - split: validation path: human_aging/validation-* - split: dev path: human_aging/dev-* - config_name: human_sexuality data_files: - split: test path: human_sexuality/test-* - split: validation path: human_sexuality/validation-* - split: dev path: human_sexuality/dev-* - config_name: international_law data_files: - split: test path: international_law/test-* - split: validation path: international_law/validation-* - split: dev path: international_law/dev-* - config_name: jurisprudence data_files: - split: test path: jurisprudence/test-* - split: validation path: jurisprudence/validation-* - split: dev path: jurisprudence/dev-* - config_name: logical_fallacies data_files: - split: test path: logical_fallacies/test-* - split: validation path: logical_fallacies/validation-* - split: dev path: logical_fallacies/dev-* - config_name: machine_learning data_files: - split: test path: machine_learning/test-* - split: validation path: machine_learning/validation-* - split: dev path: machine_learning/dev-* - config_name: management data_files: - split: test path: management/test-* - split: validation path: management/validation-* - split: dev path: management/dev-* - config_name: marketing data_files: - split: test path: marketing/test-* - split: validation path: marketing/validation-* - split: dev path: marketing/dev-* - config_name: medical_genetics data_files: - split: test path: medical_genetics/test-* - split: validation path: medical_genetics/validation-* - split: dev path: medical_genetics/dev-* - config_name: miscellaneous data_files: - split: test path: miscellaneous/test-* - split: validation path: miscellaneous/validation-* - split: dev path: miscellaneous/dev-* - config_name: moral_disputes data_files: - split: test path: moral_disputes/test-* - split: validation path: moral_disputes/validation-* - split: dev path: moral_disputes/dev-* - config_name: moral_scenarios data_files: - split: test path: moral_scenarios/test-* - split: validation path: moral_scenarios/validation-* - split: dev path: moral_scenarios/dev-* - config_name: nutrition data_files: - split: test path: nutrition/test-* - split: validation path: nutrition/validation-* - split: dev path: nutrition/dev-* - config_name: philosophy data_files: - split: test path: philosophy/test-* - split: validation path: philosophy/validation-* - split: dev path: philosophy/dev-* - config_name: prehistory data_files: - split: test path: prehistory/test-* - split: validation path: prehistory/validation-* - split: dev path: prehistory/dev-* - config_name: professional_accounting data_files: - split: test path: professional_accounting/test-* - split: validation path: professional_accounting/validation-* - split: dev path: professional_accounting/dev-* - config_name: professional_law data_files: - split: test path: professional_law/test-* - split: validation path: professional_law/validation-* - split: dev path: professional_law/dev-* - config_name: professional_medicine data_files: - split: test path: professional_medicine/test-* - split: validation path: professional_medicine/validation-* - split: dev path: professional_medicine/dev-* - config_name: professional_psychology data_files: - split: test path: professional_psychology/test-* - split: validation path: professional_psychology/validation-* - split: dev path: professional_psychology/dev-* - config_name: public_relations data_files: - split: test path: public_relations/test-* - split: validation path: public_relations/validation-* - split: dev path: public_relations/dev-* - config_name: security_studies data_files: - split: test path: security_studies/test-* - split: validation path: security_studies/validation-* - split: dev path: security_studies/dev-* - config_name: sociology data_files: - split: test path: sociology/test-* - split: validation path: sociology/validation-* - split: dev path: sociology/dev-* - config_name: us_foreign_policy data_files: - split: test path: us_foreign_policy/test-* - split: validation path: us_foreign_policy/validation-* - split: dev path: us_foreign_policy/dev-* - config_name: virology data_files: - split: test path: virology/test-* - split: validation path: virology/validation-* - split: dev path: virology/dev-* - config_name: world_religions data_files: - split: test path: world_religions/test-* - split: validation path: world_religions/validation-* - split: dev path: world_religions/dev-* --- # Dataset Card for MMLU ## Table of Contents - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository**: https://github.com/hendrycks/test - **Paper**: https://arxiv.org/abs/2009.03300 ### Dataset Summary [Measuring Massive Multitask Language Understanding](https://arxiv.org/pdf/2009.03300) by [Dan Hendrycks](https://people.eecs.berkeley.edu/~hendrycks/), [Collin Burns](http://collinpburns.com), [Steven Basart](https://stevenbas.art), Andy Zou, Mantas Mazeika, [Dawn Song](https://people.eecs.berkeley.edu/~dawnsong/), and [Jacob Steinhardt](https://www.stat.berkeley.edu/~jsteinhardt/) (ICLR 2021). This is a massive multitask test consisting of multiple-choice questions from various branches of knowledge. The test spans subjects in the humanities, social sciences, hard sciences, and other areas that are important for some people to learn. This covers 57 tasks including elementary mathematics, US history, computer science, law, and more. To attain high accuracy on this test, models must possess extensive world knowledge and problem solving ability. A complete list of tasks: ['abstract_algebra', 'anatomy', 'astronomy', 'business_ethics', 'clinical_knowledge', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_medicine', 'college_physics', 'computer_security', 'conceptual_physics', 'econometrics', 'electrical_engineering', 'elementary_mathematics', 'formal_logic', 'global_facts', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_european_history', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_mathematics', 'high_school_microeconomics', 'high_school_physics', 'high_school_psychology', 'high_school_statistics', 'high_school_us_history', 'high_school_world_history', 'human_aging', 'human_sexuality', 'international_law', 'jurisprudence', 'logical_fallacies', 'machine_learning', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'moral_disputes', 'moral_scenarios', 'nutrition', 'philosophy', 'prehistory', 'professional_accounting', 'professional_law', 'professional_medicine', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy', 'virology', 'world_religions'] ### Supported Tasks and Leaderboards | Model | Authors | Humanities | Social Science | STEM | Other | Average | |------------------------------------|----------|:-------:|:-------:|:-------:|:-------:|:-------:| | [UnifiedQA](https://arxiv.org/abs/2005.00700) | Khashabi et al., 2020 | 45.6 | 56.6 | 40.2 | 54.6 | 48.9 | [GPT-3](https://arxiv.org/abs/2005.14165) (few-shot) | Brown et al., 2020 | 40.8 | 50.4 | 36.7 | 48.8 | 43.9 | [GPT-2](https://arxiv.org/abs/2005.14165) | Radford et al., 2019 | 32.8 | 33.3 | 30.2 | 33.1 | 32.4 | Random Baseline | N/A | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 ### Languages English ## Dataset Structure ### Data Instances An example from anatomy subtask looks as follows: ``` { "question": "What is the embryological origin of the hyoid bone?", "choices": ["The first pharyngeal arch", "The first and second pharyngeal arches", "The second pharyngeal arch", "The second and third pharyngeal arches"], "answer": "D" } ``` ### Data Fields - `question`: a string feature - `choices`: a list of 4 string features - `answer`: a ClassLabel feature ### Data Splits - `auxiliary_train`: auxiliary multiple-choice training questions from ARC, MC_TEST, OBQA, RACE, etc. - `dev`: 5 examples per subtask, meant for few-shot setting - `test`: there are at least 100 examples per subtask | | auxiliary_train | dev | val | test | | ----- | :------: | :-----: | :-----: | :-----: | | TOTAL | 99842 | 285 | 1531 | 14042 ## Dataset Creation ### Curation Rationale Transformer models have driven this recent progress by pretraining on massive text corpora, including all of Wikipedia, thousands of books, and numerous websites. These models consequently see extensive information about specialized topics, most of which is not assessed by existing NLP benchmarks. To bridge the gap between the wide-ranging knowledge that models see during pretraining and the existing measures of success, we introduce a new benchmark for assessing models across a diverse set of subjects that humans learn. ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [MIT License](https://github.com/hendrycks/test/blob/master/LICENSE) ### Citation Information If you find this useful in your research, please consider citing the test and also the [ETHICS](https://arxiv.org/abs/2008.02275) dataset it draws from: ``` @article{hendryckstest2021, title={Measuring Massive Multitask Language Understanding}, author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt}, journal={Proceedings of the International Conference on Learning Representations (ICLR)}, year={2021} } @article{hendrycks2021ethics, title={Aligning AI With Shared Human Values}, author={Dan Hendrycks and Collin Burns and Steven Basart and Andrew Critch and Jerry Li and Dawn Song and Jacob Steinhardt}, journal={Proceedings of the International Conference on Learning Representations (ICLR)}, year={2021} } ``` ### Contributions Thanks to [@andyzoujm](https://github.com/andyzoujm) for adding this dataset.

hugging_face 收录