five

Exploring the association of number of cigarettes smoked and confidence to quit smoking in Korean American emerging adults: a multilevel modeling approach|吸烟行为数据集|心理因素数据集

收藏
Mendeley Data2024-01-31 更新2024-06-28 收录
吸烟行为
心理因素
下载链接:
https://digitallibrary.usc.edu/asset-management/2A3BF1LBDEG1
下载链接
链接失效反馈
资源简介:
Social cognitive theory and the behavioral theory have been used to explain the relationship between self-efficacy for abstaining from smoking and smoking behavior change. Social cognitive theory suggests increased perceived self-efficacy for abstaining from smoking leads to smoking reduction; in contrast, the behavioral theory suggests it is the decrease in smoking behavior that leads to an increase in perceived self-efficacy. The purpose of this study was to test these two competing theories in Korean American emerging adults (KAEA) (18 through 25 years of age) smokers. Data were obtained from a 7 day mobile Ecological Momentary Assessment (EMA) of situational and social contexts associated with smoking behaviors of KAEA smokers through electronic surveys on their own smartphones. Daily measures were collected for 7 days from 78 participants for a total of 546 observations. Two multilevel models were conducted to assess the bidirectional association between self-confidence to quit and number of cigarettes smoked per day. The first model was used to evaluate whether daily number of cigarettes was a predictor of the level of confidence to quit smoking the next day. The second model was used to evaluate whether daily confidence to quit was a predictor of next day’s number of cigarettes smoked. The main predictors, self-confidence to quit and number of cigarettes smoked, were disaggregated into within person effects and between person effects. Results from the first model demonstrated that smoking more than one’s usual self that day (within-person) was associated with lower levels of confidence to quit cigarettes, but this relationship was not statistically significant (est=−0.04, p=0.18). However, being a heavier smoker than average (between-person) was significantly associated with lower levels of confidence to quit smoking (est=−.03, p=0.02). Results from the second model showed having higher confidence to quit smoking than one’s usual confidence level (within-person) was not significantly associated with next day’s number of cigarettes smoked (p=0.95), but being a smoker with higher confidence to quit than the average (between-person) was significantly related to lower numbers of number of cigarettes smoked the next day (est=−0.19, p=0.04). These findings are helpful in understanding the KAEA smoking behavior, but more work needs to be done to understand how one’s self confidence to quit smoking and smoking frequency affect the behavior of KAEA smokers.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国区域交通网络数据集

该数据集包含中国各区域的交通网络信息,包括道路、铁路、航空和水路等多种交通方式的网络结构和连接关系。数据集详细记录了各交通节点的位置、交通线路的类型、长度、容量以及相关的交通流量信息。

data.stats.gov.cn 收录

Google Scholar

Google Scholar是一个学术搜索引擎,旨在检索学术文献、论文、书籍、摘要和文章等。它涵盖了广泛的学科领域,包括自然科学、社会科学、艺术和人文学科。用户可以通过关键词搜索、作者姓名、出版物名称等方式查找相关学术资源。

scholar.google.com 收录

HazyDet

HazyDet是由解放军工程大学等机构创建的一个大规模数据集,专门用于雾霾场景下的无人机视角物体检测。该数据集包含383,000个真实世界实例,收集自自然雾霾环境和正常场景中人工添加的雾霾效果,以模拟恶劣天气条件。数据集的创建过程结合了深度估计和大气散射模型,确保了数据的真实性和多样性。HazyDet主要应用于无人机在恶劣天气条件下的物体检测,旨在提高无人机在复杂环境中的感知能力。

arXiv 收录

AISHELL/AISHELL-1

Aishell是一个开源的中文普通话语音语料库,由北京壳壳科技有限公司发布。数据集包含了来自中国不同口音地区的400人的录音,录音在安静的室内环境中使用高保真麦克风进行,并下采样至16kHz。通过专业的语音标注和严格的质量检查,手动转录的准确率超过95%。该数据集免费供学术使用,旨在为语音识别领域的新研究人员提供适量的数据。

hugging_face 收录

HyperGlobal-450K - 全球最大规模高光谱图像数据集

HyperGlobal-450K数据集由武汉大学联合国内外多所知名高校及研究机构共同构建,是迄今为止全球规模最大的高光谱图像数据集。该数据集包含约45万张高光谱图像,规模等价于超过2000万张不重叠的三波段图像,远超现有的同类数据集。数据集涵盖了全球范围内的高光谱遥感图像,包括来自地球观测一号(EO-1)Hyperion和高分五号(GF-5B)两种传感器的图像,光谱范围从可见光到短波及中波红外,具有从紫外到长波红外的330个光谱波段,空间分辨率为30米。每幅图像经过精心处理,去除了无效波段和水汽吸收波段,保留了具有实际应用价值的光谱信息。HyperGlobal-450K数据集不仅支持高光谱图像的基础研究,还能够用于开发和测试各种高光谱图像处理方法,比如图像分类、目标检测、异常检测、变化检测、光谱解混、图像去噪和超分辨率等任务。

github 收录