ChEMU dataset for information extraction from chemical patents|化学信息提取数据集|自然语言处理数据集
收藏WikiArt
为了收集我们的美术作品集,我们使用了公开的 “维基艺术绘画” 数据集4 ;据我们所知,这是最大的数字化艺术品在线公开收藏。这个收藏有从十五个世纪到当代艺术家的1,119艺术家的81,449精工画的图像。 这些绘画来自27种不同的风格 (抽象,拜占庭,巴洛克等) 和 45种不同的流派 (室内、风景等)先前的作品 [26,9] 使用了不同的资源,并制作了较小的收藏,在风格,流派方面的可变性有限 和艺术家。[4] 的工作在数据收集程序方面最接近我们的工作,但是他们收集的图像数量是我们的一半。
OpenDataLab 收录
Granary
Granary是一个包含25种欧洲语言的大规模语音识别和翻译数据集,由NVIDIA等多家机构联合创建。数据集通过伪标签技术生成,旨在解决低资源语言的语音处理问题。数据集包含约643,237.57小时的语音数据,经过精心筛选和处理,旨在提高数据质量并减少数据中的错误。该数据集可用于自动语音识别(ASR)和自动语音翻译(AST)等领域的研究,有助于提高语音模型在低资源语言上的准确性和鲁棒性。
arXiv 收录
Breast Cancer Dataset
该项目专注于清理和转换一个乳腺癌数据集,该数据集最初由卢布尔雅那大学医学中心肿瘤研究所获得。目标是通过应用各种数据转换技术(如分类、编码和二值化)来创建一个可以由数据科学团队用于未来分析的精炼数据集。
github 收录
PartNet
我们介绍了PartNet: 一个一致的、大规模的三维对象数据集,用细粒度的、实例级的和分层的三维零件信息进行注释。我们的数据集包括573,585个零件实例,超过26,671个3D模型,涵盖24个对象类别。该数据集支持并充当许多任务的催化剂,例如形状分析,动态3D场景建模和仿真,可承受分析等。使用我们的数据集,我们建立了用于评估3D零件识别的三个基准任务: 细粒度语义分割,分层语义分割和实例分割。我们对四种最先进的3D深度学习算法进行了基准测试,用于细粒度语义分割,并对三种基线方法进行了基准测试。我们还提出了一种新颖的零件实例分割方法,并证明了其优于现有方法的性能。
OpenDataLab 收录
🌧️ Digital Typhoon Dataset WP (GIFs| 57GB)
🌧️ Digital Typhoon Dataset Western Pacific (Animated GIFs)
kaggle 收录
