five

RAD23-0341_dataset.xlsx|医学诊断数据集|超声技术数据集

收藏
DataCite Commons2023-08-12 更新2024-08-26 收录
医学诊断
超声技术
下载链接:
https://figshare.com/articles/dataset/RAD23-0341_dataset_xlsx/23936427/1
下载链接
链接失效反馈
资源简介:
<b>Background: </b>Owing to the global increase in the incidence of nonalcoholic fatty liver disease, the development of noninvasive, widely available, and highly accurate methods for assessing hepatic steatosis is necessary.Purpose: To evaluate the performance of models with different combinations of quantitative US parameters for their ability to predict ≥5% steatosis in patients with chronic liver disease (CLD) as defined using MRI-proton density fat fraction (MRI-PDFF).<b> </b><b>Materials and Methods: </b>Patients with CLD were enrolled in this prospective, multicenter study between February 2020 and April 2021. Integrated backscatter coefficient (IBSC), signal-to-noise ratio (SNR), and ultrasound-guided attenuation parameter (UGAP) were measured in all participants. Participant MRI-PDFF value was used to define ≥5% steatosis. Four models based on different combinations of US parameters were created: Model 1 (UGAP alone), Model 2 (UGAP + IBSC), Model 3 (UGAP + SNR), and Model 4 (UGAP + IBSC + SNR). The diagnostic performance of all models was assessed using the area under the receiver operating characteristic curve (AUC). The model was internally validated using 1000 bootstrap samples.<b> </b><b>Results: </b>A total of 582 participants were included in this study (median age, 64 years [IQR, 52–72]; 274 females), 364 in the steatosis group and 218 in the nonsteatosis group. The AUC values for steatosis diagnosis in Models 1–4 were 0.92, 0.93, 0.95, and 0.96, respectively. The C-indexes of Models adjusted by the bootstrap method were 0.92, 0.93, 0.95, and 0.96, respectively. Compared to other models, Models 3 and 4 demonstrated improved discrimination of ≥5% steatosis (p&lt;.01). <b>Conclusion: </b>A model built using the quantitative US parameters, UGAP, IBSC, and SNR, could accurately discriminate ≥5% steatosis in patients with CLD.<br>
提供机构:
figshare
创建时间:
2023-08-12
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

AgiBot World

为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。

github 收录

CHARLS

中国健康与养老追踪调查(CHARLS)数据集,旨在收集反映中国45岁及以上中老年人家庭和个人的高质量微观数据,用以分析人口老龄化问题,内容包括健康状况、经济状况、家庭结构和社会支持等。

charls.pku.edu.cn 收录

Subway Dataset

该数据集包含了全球多个城市的地铁系统数据,包括车站信息、线路图、列车时刻表、乘客流量等。数据集旨在帮助研究人员和开发者分析和模拟城市交通系统,优化地铁运营和乘客体验。

www.kaggle.com 收录

YOLO-dataset

该数据集用于训练YOLO模型,包括分类、检测和姿态识别模型。目前支持v8版本,未来计划支持更多版本。

github 收录