five

ORCID Public Data File 2019|学术研究数据集|身份识别数据集

收藏
Mendeley Data2024-01-31 更新2024-06-29 收录
学术研究
身份识别
下载链接:
https://orcid.figshare.com/articles/ORCID_Public_Data_File_2019/9988322/2
下载链接
链接失效反馈
资源简介:
These files contain a snapshot of all public data in the ORCID Registry associated with an ORCID record that was created or claimed by an individual as of October 1st, 2019. ORCID publishes this file once per year under a Creative Commons CC0 1.0 Universal public domain dedication. This means that, to the extent possible under law, ORCID has waived all copyright and related or neighbouring rights to the Public Data File. For more information on the file, see https://orcid.org/content/orcid-public-data-file-use-policy The file contains the public information associated with each user's ORCID record. The data is available in XML format and is further divided into separate files for easier management. One file contains the full record summary for each record. The rest of the data is divided into 11 files which contain the activities for each record including full work data. Below is more complete description of how the data is structured. Summaries file Name: ORCID_2019_summaries.tar.gzDescription: Contains all the existing summaries, when extracted, it will generate the following file structure: summaries/[3 digits checksum]/[iD].xmlExample: If you are looking for the summary of iD '0000-0002-7869-831X', decompress the file and you will find the summary under 'summaries/31X/0000-0002-7869-831X.xml'. Activities files Named: - ORCID_2019_activites_0.tar.gz - ORCID_2019_activites_1.tar.gz - ORCID_2019_activites_2.tar.gz - ORCID_2019_activites_3.tar.gz - ORCID_2019_activites_4.tar.gz - ORCID_2019_activites_5.tar.gz - ORCID_2019_activites_6.tar.gz - ORCID_2019_activites_7.tar.gz - ORCID_2019_activites_8.tar.gz - ORCID_2019_activites_9.tar.gz - ORCID_2019_activites_X.tar.gz Description: Consists of 11 .tar.gz files, each file contains the public activities that belongs to an iD that contains a given checksum. The file hierarchy is as follows: [checksum]/[3 digits checksum]/[iD]/[activity type]/[iD]_[activity_type]_[putcode].xml Examples: If you are looking for the public activities that belong to `0000-0002-7869-831X: Decompress the file 'ORCID_2019_activites_X.tar.gz'.You will find all the public activities under 'X/31X/0000-0002-7869-831X/' which are then sub-divided in folders for each activity type. If you are looking for all the employments that belong to '0000-0002-7869-831X': Decompress the file 'ORCID_2019_activites_X.tar.gz',Navigate to 'X/31X/0000-0002-7869-831X/employments'. If you are looking for the employment with put-code '7923980' that belongs to '0000-0002-7869-831X' : Decompress the file 'ORCID_2019_activites_X.tar.gz'.You will find that employment under 'X/31X/0000-0002-7869-831X/employments/0000-0002-7869-831X_employments_7923980.xml'. Companion Resources: ORCID 3.0 XSD: https://github.com/ORCID/orcid-model/tree/master/src/main/resources/record_3.0#orcid-api-v30-guide 2018 File: https://doi.org/10.23640/07243.7234028.v12017 File: https://doi.org/10.6084/m9.figshare.5479792.v12016 File: https://doi.org/10.6084/m9.figshare.41340272015 File: https://dx.doi.org/10.6084/m9.figshare.15827052014 File: http://dx.doi.org/10.14454/07243.2014.0012013 File: http://dx.doi.org/10.14454/07243.2013.001
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

LIDC-IDRI

LIDC-IDRI 数据集包含来自四位经验丰富的胸部放射科医师的病变注释。 LIDC-IDRI 包含来自 1010 名肺部患者的 1018 份低剂量肺部 CT。

OpenDataLab 收录

Breast Cancer Dataset

该项目专注于清理和转换一个乳腺癌数据集,该数据集最初由卢布尔雅那大学医学中心肿瘤研究所获得。目标是通过应用各种数据转换技术(如分类、编码和二值化)来创建一个可以由数据科学团队用于未来分析的精炼数据集。

github 收录

Figshare

Figshare是一个在线数据共享平台,允许研究人员上传和共享各种类型的研究成果,包括数据集、论文、图像、视频等。它旨在促进科学研究的开放性和可重复性。

figshare.com 收录

MedDialog

MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。

github 收录

猫狗图像数据集

该数据集包含猫和狗的图像,每类各12500张。训练集和测试集分别包含10000张和2500张图像,用于模型的训练和评估。

github 收录