five

Supplementary Material for: Use of the WHO Nutrient Profile Model for food marketing regulation in Germany: feasibility and public health implications|食品营销法规数据集|公共卫生政策数据集

收藏
Mendeley Data2024-06-25 更新2024-06-27 收录
食品营销法规
公共卫生政策
下载链接:
https://karger.figshare.com/articles/dataset/Supplementary_Material_for_Use_of_the_WHO_Nutrient_Profile_Model_for_food_marketing_regulation_in_Germany_feasibility_and_public_health_implications/24565009/1
下载链接
链接失效反馈
资源简介:
Introduction: Exposure to marketing for foods high in sugar, salt, and fat is considered a key risk factor for childhood obesity. To support efforts to limit such marketing, the World Health Organization Regional Office for Europe has developed a nutrient profile model (WHO NPM). Germany’s Federal Ministry of Food and Agriculture plans to use this model in proposed new food marketing legislation, but it has not yet been tested in Germany. The present study therefore assesses the feasibility and implications of implementing the WHO NPM in Germany. Methods: We applied the WHO NPM to a random sample of 660 food and beverage products across 22 product categories on the German market drawn from Open Food Facts, a publicly available product database. We calculated the share of products permitted for marketing to children based on the WHO NPM, both under current market conditions and for several hypothetical reformulation scenarios. We also assessed effects of adaptations to and practical challenges in applying the WHO NPM. Results: The median share of products permitted for marketing to children across the model’s 22 product categories was 20% (interquartile range (IQR) 3-59%) and increased to 38% (IQR 11-73%) with model adaptations for fruit juice and milk proposed by the German government. With targeted reformulation (assuming a 30% reduction in fat, sugar, sodium, and/or energy) the share of products permitted for marketing to children increased substantially (defined as a relative increase by at least 50%) in several product categories (including bread, processed meat, yogurt and cream, ready-made and convenience foods, and savoury plant-based foods), but changed less in the remaining categories. Practical challenges included the ascertainment of the trans-fatty acid content of products, among others. Conclusion: The application of the WHO NPM in Germany was found to be feasible. Its use in the proposed legislation on food marketing in Germany seems likely to serve its intended public health objective of limiting marketing in a targeted manner specifically for less healthy products. It seems plausible that it may incentivise reformulation in some product categories. Practical challenges could be addressed with appropriate adaptations and procedural provisions.
创建时间:
2023-11-17
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

CatMeows

该数据集包含440个声音样本,由21只属于两个品种(缅因州库恩猫和欧洲短毛猫)的猫在三种不同情境下发出的喵声组成。这些情境包括刷毛、在陌生环境中隔离和等待食物。每个声音文件都遵循特定的命名约定,包含猫的唯一ID、品种、性别、猫主人的唯一ID、录音场次和发声计数。此外,还有一个额外的zip文件,包含被排除的录音(非喵声)和未剪辑的连续发声序列。

huggingface 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github 收录

FER2013

FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

github 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录