five

山东各地区农田土壤水分蒸发量预测数据|农业数据集|土壤水分预测数据集

收藏
浙江省数据知识产权登记平台2024-12-17 更新2024-12-18 收录
农业
土壤水分预测
下载链接:
https://www.zjip.org.cn/home/announce/trends/105787
下载链接
链接失效反馈
资源简介:
通过全自动小型气象站对山东各地区农田实时监测环境温度、环境湿度、风速、土壤含水率、本周降水量、植被指数、太阳日照时间等数据并每日上传即时数据,根据上述7个数据预测出农田土壤水分蒸发量。该预测数量可为农田水分盈亏分析提供数据支撑,指导农田科学灌溉和排水,从而提高作物的产量和质量。另外可结合地理信息系统(GIS)技术,将各地点的农田地理数据和土壤水分蒸发量信息进行深度整合和分析,绘制地理位置-土壤水分蒸发量地图,以直观的可视化形式呈现给用户,增强地理位置与土壤水分蒸发量关系的理解。每天早上通过全自动小型气象站对山东各地区不同编号的农田实时监测,采集环境温度、环境湿度、风速、土壤含水率、本周降水量、植被指数、太阳日照时间等数据并每日上传即时数据。 通过广义回归神经网络(GRNN)方法对土壤水分蒸发量进行预测,利用主成分分析法提取影响土壤水分蒸发量的7个因子(环境温度、环境湿度、风速、土壤含水率、本周降水量、植被指数、太阳日照时间),将上述7个因子作为GRNN模型的输入量,土壤水分蒸发量作为输出量从而预测出农田土壤水分蒸发量。GRNN模型预测值与实测值拟合程度较高,模型模拟精度较高,可用于山东各地区农田土壤水分蒸发量预测。
提供机构:
杭州森合悦科技有限公司
创建时间:
2024-11-15
AI搜集汇总
数据集介绍
main_image_url
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国交通事故深度调查(CIDAS)数据集

交通事故深度调查数据通过采用科学系统方法现场调查中国道路上实际发生交通事故相关的道路环境、道路交通行为、车辆损坏、人员损伤信息,以探究碰撞事故中车损和人伤机理。目前已积累深度调查事故10000余例,单个案例信息包含人、车 、路和环境多维信息组成的3000多个字段。该数据集可作为深入分析中国道路交通事故工况特征,探索事故预防和损伤防护措施的关键数据源,为制定汽车安全法规和标准、完善汽车测评试验规程、

北方大数据交易中心 收录

GME Data

关于2021年GameStop股票活动的数据,包括每日合并的GME短期成交量数据、每日失败交付数据、可借股数、期权链数据以及不同时间框架的开盘/最高/最低/收盘/成交量条形图。

github 收录

LinkedIn Salary Insights Dataset

LinkedIn Salary Insights Dataset 提供了全球范围内的薪资数据,包括不同职位、行业、地理位置和经验水平的薪资信息。该数据集旨在帮助用户了解薪资趋势和市场行情,支持职业规划和薪资谈判。

www.linkedin.com 收录

中国陆域及周边逐日1km全天候地表温度数据集(TRIMS LST;2000-2023)

地表温度(Land surface temperature, LST)是地球表面与大气之间界面的重要参量之一。它既是地表与大气能量交互作用的直接体现,又对于地气过程具有复杂的反馈作用。因此,地表温度不仅是气候变化的敏感指示因子和掌握气候变化规律的重要前提,还是众多模型的直接输入参数,在许多领域有广泛的应用,如气象气候、环境生态、水文等。伴随地学及相关领域研究的深入和精细化,学术界对卫星遥感的全天候地表温度(All-weather LST)具有迫切的需求。 本数据集的制备方法是增强型的卫星热红外遥感-再分析数据集成方法。方法的主要输入数据为Terra/Aqua MODIS LST产品和GLDAS等数据,辅助数据包括卫星遥感提供的植被指数、地表反照率等。方法充分利用了卫星热红外遥感和再分析数据提供的地表温度高频分量、低频分量以及地表温度的空间相关性,最终重建得到较高质量的全天候地表温度数据集。 评价结果表明,本数据集具有良好的图像质量和精度,不仅在空间上无缝,还与当前学术界广泛采用的逐日1 km Terra/Aqua MODIS LST产品在幅值和空间分布上具有较高的一致性。当以MODIS LST为参考时,该数据集在白天和夜间的平均偏差(MBE)为0.09K和-0.03K,偏差标准差(STD)为1.45K和1.17K。基于19个站点实测数据的检验结果表明,其MBE为-2.26K至1.73K,RMSE为0.80K至3.68K,且在晴空与非晴空条件下无显著区别。 本数据集的时间分辨率为逐日4次,空间分辨率为1km,时间跨度为2000年-2023年;空间范围包括我国陆域的主要区域(包含港澳台地区,暂不包含我国南海诸岛)及周边区域(72°E-135°E,19°N-55°N)。本数据集的缩写名为TRIMS LST(Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless LST),以便用户使用。需要说明的是,TRIMS LST的空间子集TRIMS LST-TP(中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2023)V2)同步在国家青藏高原科学数据中心发布,以减少相关用户数据下载和处理的工作量。

国家青藏高原科学数据中心 收录

YOLO Drone Detection Dataset

为了促进无人机检测模型的开发和评估,我们引入了一个新颖且全面的数据集,专门为训练和测试无人机检测算法而设计。该数据集来源于Kaggle上的公开数据集,包含在各种环境和摄像机视角下捕获的多样化的带注释图像。数据集包括无人机实例以及其他常见对象,以实现强大的检测和分类。

github 收录