five

Experimental dataset on water levels in scrutinizing the influences of downstream semi-circular obstacles on floods arising from the failure of dams with different levels of reservoir silting|水坝溃坝数据集|水位变化数据集

收藏
Mendeley Data2024-01-31 更新2024-06-27 收录
水坝溃坝
水位变化
下载链接:
https://figshare.com/articles/dataset/Experimental_dataset_on_water_levels_in_scrutinizing_the_influences_of_downstream_semi-circular_obstacles_on_floods_arising_from_the_failure_of_dams_with_different_levels_of_reservoir_silting/13686142/3
下载链接
链接失效反馈
资源简介:
In this file, all water level data associated with 24 different dam break scenarios were extracted from high-quality experimental video images. The dataset is collected, classified and presented in a total of 24 distinct tables in 3 categories based on downstream initial conditions; 1- Downstream bed with a semi-circular obstacle with radius of 4.5 cm, 2- Downstream bed with a semi-circular obstacle with radius of 7.5 cm, and 3- Smooth downstream bed without any obstacle. Tables 1-8, present the free surface water level data at 20 different locations along the flume and 15 snap times after the dam break, while a semi-circular obstacle with radius of 4.5 cm was initially mounted on the downstream bed. A clear water reservoir (without sediment) as well as 7 different initial sediment depths (0.03, 0.075, 0.15, 0.175, 0.2, 0.22 or 0.24 m) are detailed in Table 1-8, respectively. These 8 initial upstream sediment depths make the upstream reservoir 0% to 80% silted-up with respect to the total 30 cm height of the reservoir. Table 9-16 provide the free surface water level data at all abovementioned sections and snap times while a semi-circular obstacle with radius of 7.5 cm was initially mounted on the downstream bed. A clear water reservoir (without sediment) as well as 7 different initial sediment depths (0.03, 0.075, 0.15, 0.175, 0.2, 0.22 or 0.24 m) are detailed in Table 9-16, respectively. Table 17-24 show the free surface water level data at all sections and snap times while the downstream bed considered smooth and No obstacle was mounted on the downstream bed. A clear water reservoir (without sediment) as well as 7 different initial sediment depths (0.03, 0.075, 0.15, 0.175, 0.2, 0.22 or 0.24 m) are detailed in Table 17-24, respectively. The unit that has been used to measure data is centimeter and the abbreviations including and are the radiuses of downstream semi-circular obstacles and upstream initial sediment depth, respectively. Time refers to the snap times after sudden removal of the gate using second as a unit of measurement. It should be noted that the vertical column to the left of the tables indicates the distances of different locations in centimeters from the beginning point of the laboratory flume. So, the L column indicates all 20 distinct locations along the flume and their distances from the reservoir beginning, in centimeter as a unit of measurement. Foad Vosoughi, Research Associate, Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran. foad.vosooghi@gmail.com
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

农业农作物生长全周期数据集

农业农作物生长全周期数据集通过整合农作物、农场面积、刺激类型、肥料用量、杀虫剂使用量、产量、土壤类型、季节和用水量等多维度数据,实现农业生产的精准化管理和可持续发展。

浙江大数据交易服务平台 收录

CliMedBench

CliMedBench是一个大规模的中文医疗大语言模型评估基准,由华东师范大学等机构创建。该数据集包含33,735个问题,涵盖14个核心临床场景,主要来源于顶级三级医院的真实电子健康记录和考试练习。数据集的创建过程包括专家指导的数据选择和多轮质量控制,确保数据的真实性和可靠性。CliMedBench旨在评估和提升医疗大语言模型在临床决策支持、诊断和治疗建议等方面的能力,解决医疗领域中模型性能评估的不足问题。

arXiv 收录

LinkedIn Salary Insights Dataset

LinkedIn Salary Insights Dataset 提供了全球范围内的薪资数据,包括不同职位、行业、地理位置和经验水平的薪资信息。该数据集旨在帮助用户了解薪资趋势和市场行情,支持职业规划和薪资谈判。

www.linkedin.com 收录

Nexdata/chinese_dialect

该数据集包含25,000小时的中文方言语音数据,收集自多个方言区域的本地方言使用者,涵盖闽南语、粤语、四川话、河南话、东北话、上海话、维吾尔语和藏语等。数据格式为16kHz、16bit、未压缩的wav文件,单声道。句子准确率超过95%。数据集支持的任务包括自动语音识别(ASR)和音频说话人识别。

hugging_face 收录

Traditional-Chinese-Medicine-Dataset-SFT

该数据集是一个高质量的中医数据集,主要由非网络来源的内部数据构成,包含约1GB的中医各个领域临床案例、名家典籍、医学百科、名词解释等优质内容。数据集99%为简体中文内容,质量优异,信息密度可观。数据集适用于预训练或继续预训练用途,未来将继续发布针对SFT/IFT的多轮对话和问答数据集。数据集可以独立使用,但建议先使用配套的预训练数据集对模型进行继续预训练后,再使用该数据集进行进一步的指令微调。数据集还包含一定比例的中文常识、中文多轮对话数据以及古文/文言文<->现代文翻译数据,以避免灾难性遗忘并加强模型表现。

huggingface 收录