five

Positioning Risk – Climate variability, Nonstationarity and Hydrological Extremes|气候变化数据集|水文系统数据集

收藏
DataONE2022-04-15 更新2024-06-08 收录
气候变化
水文系统
下载链接:
https://search.dataone.org/view/sha256:1c8aa272454f18f16ba6f99f59048c250f261bd78e433bce24b88b9b8eef016a
下载链接
链接失效反馈
资源简介:
Water and the Changing Climate Chair: Jeanne VanBriesen (Carnegie Mellon University) Global climate change is changing the frequency and magnitude of precipitation events in many regions, and further change is expected. Effects on precipitation-dependent events (drought, flood) as well as on rainfall-dependent systems (water supply, energy systems, agriculture) will challenge our study and management of hydrologic systems. This session will explore methods to study, model, and plan for hydrologic systems under changing climactic conditions. \"Positioning Risk – Climate variability, Nonstationarity and Hydrological Extremes\" Speaker: Ana Barros (Duke University) The notion of positioning risk in the context of nonstationarity and future climate is based on the premise that the metrics of risk change conditional on climate regime. The IPCC defines climate regime as a state of the climate system that occurs more frequently than nearby states due to either more persistence or more frequent recurrence, that is a local maximum in the probability density function. First, Global climate Model simulations of past and current climate are analyzed against observations to assess the predictability of multi-decadal to century scale climate regimes relevant to hydrological extremes (precipitation and streamflow) in the Southeast US. Next, we separately address high and low precipitation statistics and space-time variability conditional on climate regime and physiography, and explore the development of a framework for adaptively positioning risk in the assessment of future extremes that also incorporates understanding of regional and local hydrology.
创建时间:
2022-04-15
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

rag-datasets/rag-mini-bioasq

该数据集主要用于问答和句子相似性任务,涉及生物医学领域。数据集包含两个配置:text-corpus和question-answer-passages,分别对应不同的数据文件路径。数据集来源于BioASQ任务11b的训练数据集,并通过`generate.py`脚本生成了子集。

hugging_face 收录

中国1km分辨率逐月降水量数据集(1901-2023)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2023.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

CE-CSL

CE-CSL数据集是由哈尔滨工程大学智能科学与工程学院创建的中文连续手语数据集,旨在解决现有数据集在复杂环境下的局限性。该数据集包含5,988个从日常生活场景中收集的连续手语视频片段,涵盖超过70种不同的复杂背景,确保了数据集的代表性和泛化能力。数据集的创建过程严格遵循实际应用导向,通过收集大量真实场景下的手语视频材料,覆盖了广泛的情境变化和环境复杂性。CE-CSL数据集主要应用于连续手语识别领域,旨在提高手语识别技术在复杂环境中的准确性和效率,促进聋人与听人社区之间的无障碍沟通。

arXiv 收录

MUStARD++

MUStARD++是一个多模态讽刺检测数据集,由萨里大学创建,旨在通过语言、语音和视觉线索全面捕捉讽刺现象。数据集包含1202个视频样本,来源于多个流行电视节目,通过手动标注确保高质量的讽刺标签。创建过程中,研究者们通过多轮标注和验证确保数据的准确性和多样性。该数据集主要应用于自动讽刺检测,帮助机器理解并识别讽刺语境,解决讽刺识别中的多模态挑战。

arXiv 收录

AISHELL/AISHELL-1

Aishell是一个开源的中文普通话语音语料库,由北京壳壳科技有限公司发布。数据集包含了来自中国不同口音地区的400人的录音,录音在安静的室内环境中使用高保真麦克风进行,并下采样至16kHz。通过专业的语音标注和严格的质量检查,手动转录的准确率超过95%。该数据集免费供学术使用,旨在为语音识别领域的新研究人员提供适量的数据。

hugging_face 收录