Global Economic Data|全球经济数据集|经济指标数据集
收藏
- 联合国成立,标志着全球经济数据收集和分析的系统化开始。
- 国际货币基金组织(IMF)成立,开始发布全球经济数据,包括国际收支、外汇储备等。
- 世界银行开始发布全球经济发展报告,涵盖经济增长、贫困、教育等多个领域。
- 联合国统计司(UNSD)成立,负责协调和促进全球经济数据的收集和发布。
- 联合国发布首个全球经济展望报告,预测全球经济增长趋势。
- 世界经济论坛(WEF)成立,开始发布全球竞争力报告,分析各国经济表现。
- 世界贸易组织(WTO)成立,开始发布全球贸易数据,包括进出口、关税等。
- 联合国发布千年发展目标(MDGs)报告,涵盖全球经济、社会和环境发展数据。
- 联合国发布可持续发展目标(SDGs)报告,进一步细化全球经济数据分析。
- 全球经济数据在应对COVID-19大流行中发挥了关键作用,各国政府和国际组织利用数据进行政策制定和评估。
中国1km分辨率逐月降水量数据集(1901-2024)
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
国家青藏高原科学数据中心 收录
中国近海台风路径集合数据集(1945-2024)
1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。 数据源为获取温州台风网(http://www.wztf121.com/)的真实观测路径数据,经过处理整合后形成文件,如使用csv文件需使用文本编辑器打开浏览,否则会出现乱码,如要使用excel查看数据,请使用xlsx的格式。
国家海洋科学数据中心 收录
Weibo Dataset
V1版本包含了2023年上半年来自微博平台的2,106条新闻数据。其中包含1,000条假新闻和1,067条真实新闻。数据集包含新闻传播的评论数据,包含用户和评论信息。V2版本包含了来自中国微博社交媒体平台的11,329条新闻。其中包含5,661条假新闻和5,668条真实新闻。与V1版本相比,V2版本在V1的基础上扩大了数据量。同时,V2提供了新闻的多模态数据,包括新闻帖子、评论集合、图片、视频和声音信息。因此,V2提供了更真实的社交网络环境模拟,从而支持下游任务。
github 收录
AgiBot World
为了进一步推动通用具身智能领域研究进展,让高质量机器人数据触手可及,作为上海模塑申城语料普惠计划中的一份子,智元机器人携手上海人工智能实验室、国家地方共建人形机器人创新中心以及上海库帕思,重磅发布全球首个基于全域真实场景、全能硬件平台、全程质量把控的百万真机数据集开源项目 AgiBot World。这一里程碑式的开源项目,旨在构建国际领先的开源技术底座,标志着具身智能领域 「ImageNet 时刻」已到来。AgiBot World 是全球首个基于全域真实场景、全能硬件平台、全程质量把控的大规模机器人数据集。相比于 Google 开源的 Open X-Embodiment 数据集,AgiBot World 的长程数据规模高出 10 倍,场景范围覆盖面扩大 100 倍,数据质量从实验室级上升到工业级标准。AgiBot World 数据集收录了八十余种日常生活中的多样化技能,从抓取、放置、推、拉等基础操作,到搅拌、折叠、熨烫等精细长程、双臂协同复杂交互,几乎涵盖了日常生活所需的绝大多数动作需求。
github 收录
有害气体检测设备调试自动化系统市场集中度评价数据
有害气体检测设备调试自动化系统作为保障工业安全生产、预防重大事故的核心技术装备,在石油化工、矿山开采、市政管网和环保监测等领域发挥着不可替代的作用。特别是在应对有毒有害气体泄漏、爆炸极限预警等高风险场景时,其智能化调试、多参数协同分析的特性,不仅能显著提升检测精度和响应速度,还能通过预防性维护大幅降低安全事故发生率。随着工业安全法规日趋严格和智能化监测技术的快速发展,该系统市场需求呈现加速增长态势。评价该市场的集中度,对于把握行业竞争格局、优化技术研发方向、制定精准的市场开发策略以及推动智能安全监测技术创新具有重要战略价值。1.数据采集:收集公司有害气体检测设备调试自动化系统在不同地区的销售数据,具体包括:时间、系统名称、区域、客户编号、销售额/万元、总销售额/万元。 2.数据处理:去除异常值和重复数据,确保数据的准确性和可靠性。将客户的销售额数据转换为市场份额(Si),即销售额占总销售额的比例。 3.具体计算过程和公式:市场份额计算:Si = 客户销售额 / 总销售额,市场集中度指数(CR)计算:CR = ∑(Si)^2,其中Si代表第i个客户的市场份额(销售额占总销售额的比例)。 4.数据分类分级应用:根据CR指数的大小,CR指数的取值范围为0到1,将市场集中度分为高集中度(0.7≤CR≤1)、中集中度(0.4≤CR<0.7)和低集中度(0≤CR<0.4)。
浙江省数据知识产权登记平台 收录