five

FER2013|面部表情识别数据集

收藏
github2024-05-24 更新2024-05-31 收录
面部表情识别
下载链接:
https://github.com/lyz678/Emotion-recogniton-pytorch
下载链接
链接失效反馈
资源简介:
FER2013数据集是一个广泛用于面部表情识别领域的数据集,包含28,709个训练样本和7,178个测试样本。图像属性为48x48像素,标签包括愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。

The FER2013 dataset is extensively utilized in the field of facial expression recognition, comprising 28,709 training samples and 7,178 testing samples. The images are characterized by a resolution of 48x48 pixels, with labels encompassing anger, disgust, fear, happiness, sadness, surprise, and neutrality.
创建时间:
2024-05-21
原始信息汇总

数据集概述

数据集名称

  • FER2013 Dataset

数据集来源

数据集属性

  • 图像属性:48 x 48 pixels (2304 bytes)
  • 标签
    • 0=Angry
    • 1=Disgust
    • 2=Fear
    • 3=Happy
    • 4=Sad
    • 5=Surprise
    • 6=Neutral

数据集组成

  • 训练集:28,709 examples
  • 公共测试集:3,589 examples
  • 私有测试集:3,589 examples

数据集使用

  • 下载并放置于 "fer2013" 文件夹
  • 使用命令行工具进行下载和解压: bash cd fer2013 pip install kaggle kaggle datasets download -d deadskull7/fer2013 unzip fer2013

数据集训练与评估

  • 使用 python train_emotion_classifier.py --model MiniXception --bs 128 --lr 0.01 进行模型训练
  • 模型评估结果:
    • Model:miniXception ; test accuracy:65%
    • Model:Resnet18 ; test accuracy:82%

数据集应用

  • 实时视频处理:使用 python run_on_cpu.py
  • 在 Orange Pi AI Pro (Ascend310B NPU) 上运行: bash cd run_on_Ascend310B atc --model=miniXception.sim.onnx --framework=5 --output=miniXception.sim --input_format=NCHW --input_shape="input.1:1,1,48,48" --log=error --soc_version=Ascend310B1 #.onnx to .om python run_om.py
AI搜集汇总
数据集介绍
main_image_url
构建方式
FER2013数据集的构建基于广泛使用的面部表情识别挑战,其图像属性为48 x 48像素,每个图像占用2304字节。该数据集包含七个情感类别:愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。训练集由28,709个样本组成,公共测试集和私有测试集各包含3,589个样本。数据集通过Kaggle平台发布,用户可通过下载fer2013.csv文件并放置在指定文件夹中进行使用。
特点
FER2013数据集以其高分辨率图像和多样化的情感标签著称,为面部表情识别研究提供了丰富的资源。其图像尺寸小巧,便于处理和存储,同时保持了足够的细节以支持深度学习模型的训练。数据集的多样性和广泛性使其成为面部表情识别领域的标准基准,适用于多种模型和算法的评估。
使用方法
使用FER2013数据集时,用户首先需从Kaggle平台下载fer2013.csv文件并解压缩。随后,可通过PyTorch等深度学习框架加载数据集进行模型训练和评估。项目提供了详细的训练和评估脚本,如train_emotion_classifier.py,用户可根据需要调整模型参数。此外,数据集支持实时视频表情检测和模型部署至Orange Pi AI Pro等边缘设备,展现了其广泛的应用潜力。
背景与挑战
背景概述
FER2013数据集是面部表情识别领域中广泛使用的基准数据集,由Kaggle平台上的一个挑战赛提供。该数据集包含28,709张48x48像素的灰度图像,每张图像标记为七种基本情感之一:愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。FER2013的创建旨在推动面部表情识别技术的发展,特别是在深度学习方法的应用上。自发布以来,该数据集已成为许多研究项目和算法评估的标准基准,显著促进了情感计算和人工智能在情感识别方面的进步。
当前挑战
FER2013数据集在面部表情识别领域面临多项挑战。首先,数据集中的图像分辨率较低,仅为48x48像素,这增加了特征提取和模型训练的难度。其次,情感标签的分布不均衡,某些情感类别如厌恶的样本数量较少,导致模型在这些类别上的表现较差。此外,面部表情的微妙变化和个体差异也是识别过程中的重要挑战。在构建过程中,数据集的收集和标注工作复杂,需要确保标注的一致性和准确性,以提高模型的泛化能力。
常用场景
经典使用场景
在面部表情识别领域,FER2013数据集被广泛应用于深度学习模型的训练与评估。该数据集包含28,709张48x48像素的灰度图像,涵盖了七种基本情感类别:愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性。通过使用FER2013数据集,研究者能够开发和验证各种面部表情识别算法,从而在情感计算和人工智能交互系统中实现高精度的情感识别。
解决学术问题
FER2013数据集在学术研究中解决了面部表情识别的关键问题。它为研究人员提供了一个标准化的基准,用于评估和比较不同算法在情感识别任务中的性能。通过该数据集,研究者能够深入探讨如何提高模型在复杂和多样化面部表情中的识别准确性,从而推动情感计算领域的发展,并为心理学和认知科学提供新的研究工具。
衍生相关工作
FER2013数据集的发布激发了大量相关研究工作。许多研究者基于该数据集开发了新的深度学习模型,如MiniXception和ResNet18,显著提升了情感识别的准确性。此外,该数据集还被用于跨领域研究,如情感驱动的机器人行为控制和情感分析在社交媒体中的应用。这些衍生工作不仅丰富了情感计算的理论基础,也为实际应用提供了强有力的技术支持。
以上内容由AI搜集并总结生成
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4098个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

Canadian Census

**Overview** The data package provides demographics for Canadian population groups according to multiple location categories: Forward Sortation Areas (FSAs), Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs), Federal Electoral Districts (FEDs), Health Regions (HRs) and provinces. **Description** The data are available through the Canadian Census and the National Household Survey (NHS), separated or combined. The main demographic indicators provided for the population groups, stratified not only by location but also for the majority by demographical and socioeconomic characteristics, are population number, females and males, usual residents and private dwellings. The primary use of the data at the Health Region level is for health surveillance and population health research. Federal and provincial departments of health and human resources, social service agencies, and other types of government agencies use the information to monitor, plan, implement and evaluate programs to improve the health of Canadians and the efficiency of health services. Researchers from various fields use the information to conduct research to improve health. Non-profit health organizations and the media use the health region data to raise awareness about health, an issue of concern to all Canadians. The Census population counts for a particular geographic area representing the number of Canadians whose usual place of residence is in that area, regardless of where they happened to be on Census Day. Also included are any Canadians who were staying in that area on Census Day and who had no usual place of residence elsewhere in Canada, as well as those considered to be 'non-permanent residents'. National Household Survey (NHS) provides demographic data for various levels of geography, including provinces and territories, census metropolitan areas/census agglomerations, census divisions, census subdivisions, census tracts, federal electoral districts and health regions. In order to provide a comprehensive overview of an area, this product presents data from both the NHS and the Census. NHS data topics include immigration and ethnocultural diversity; aboriginal peoples; education and labor; mobility and migration; language of work; income and housing. 2011 Census data topics include population and dwelling counts; age and sex; families, households and marital status; structural type of dwelling and collectives; and language. The data are collected for private dwellings occupied by usual residents. A private dwelling is a dwelling in which a person or a group of persons permanently reside. Information for the National Household Survey does not include information for collective dwellings. Collective dwellings are dwellings used for commercial, institutional or communal purposes, such as a hotel, a hospital or a work camp. **Benefits** - Useful for canada public health stakeholders, for public health specialist or specialized public and other interested parties. for health surveillance and population health research. for monitoring, planning, implementation and evaluation of health-related programs. media agencies may use the health regions data to raise awareness about health, an issue of concern to all canadians. giving the addition of longitude and latitude in some of the datasets the data can be useful to transpose the values into geographical representations. the fields descriptions along with the dataset description are useful for the user to quickly understand the data and the dataset. **License Information** The use of John Snow Labs datasets is free for personal and research purposes. For commercial use please subscribe to the [Data Library](https://www.johnsnowlabs.com/marketplace/) on John Snow Labs website. The subscription will allow you to use all John Snow Labs datasets and data packages for commercial purposes. **Included Datasets** - [Canadian Population and Dwelling by FSA 2011](https://www.johnsnowlabs.com/marketplace/canadian-population-and-dwelling-by-fsa-2011) - This Canadian Census dataset covers data on population, total private dwellings and private dwellings occupied by usual residents by forward sortation area (FSA). It is enriched with the percentage of the population or dwellings versus the total amount as well as the geographical area, province, and latitude and longitude. The whole Canada's population is marked as 100, referring to 100% for the percentages. - [Detailed Canadian Population Statistics by CMAs and CAs 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-cmas-and-cas-2011) - This dataset covers the population statistics of Canada by Census Metropolitan Areas (CMAs) and Census Agglomerations (CAs). It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by FED 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-fed-2011) - This dataset covers the population statistics of Canada from 2011 by Federal Electoral District of 2013 Representation Order. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Health Region 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-health-region-2011) - This dataset covers the population statistics of Canada by health region. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. - [Detailed Canadian Population Statistics by Province 2011](https://www.johnsnowlabs.com/marketplace/detailed-canadian-population-statistics-by-province-2011) - This dataset covers the population statistics of Canada by provinces and territories. It is categorized also by citizen/immigration status, ethnic origin, religion, mobility, education, language, work, housing, income etc. There is detailed characteristics categorization within these stated categories that are in 5 layers. **Data Engineering Overview** **We deliver high-quality data** - Each dataset goes through 3 levels of quality review - 2 Manual reviews are done by domain experts - Then, an automated set of 60+ validations enforces every datum matches metadata & defined constraints - Data is normalized into one unified type system - All dates, unites, codes, currencies look the same - All null values are normalized to the same value - All dataset and field names are SQL and Hive compliant - Data and Metadata - Data is available in both CSV and Apache Parquet format, optimized for high read performance on distributed Hadoop, Spark & MPP clusters - Metadata is provided in the open Frictionless Data standard, and its every field is normalized & validated - Data Updates - Data updates support replace-on-update: outdated foreign keys are deprecated, not deleted **Our data is curated and enriched by domain experts** Each dataset is manually curated by our team of doctors, pharmacists, public health & medical billing experts: - Field names, descriptions, and normalized values are chosen by people who actually understand their meaning - Healthcare & life science experts add categories, search keywords, descriptions and more to each dataset - Both manual and automated data enrichment supported for clinical codes, providers, drugs, and geo-locations - The data is always kept up to date – even when the source requires manual effort to get updates - Support for data subscribers is provided directly by the domain experts who curated the data sets - Every data source’s license is manually verified to allow for royalty-free commercial use and redistribution. **Need Help?** If you have questions about our products, contact us at [info@johnsnowlabs.com](mailto:info@johnsnowlabs.com).

Databricks 收录

中国行政区划shp数据

   中国行政区划数据是重要的基础地理信息数据,目前不同来源的全国行政区划数据非常多,但能够开放获取的高质量行政区域数据少之又少。基于此,锐多宝的地理空间制作一套2013-2023年可开放获取的高质量行政区划数据。该套数据以2022年国家基础地理信息数据中的县区划数据作为矢量基础,辅以高德行政区划数据、天地图行政区划数据,参考历年来民政部公布的行政区划为属性基础,具有时间跨度长、属性丰富、国界准确、更新持续等特性。   中国行政区划数据统计截止时间是2023年2月12日,包含省、市、县、国界、九段线等矢量shp数据。该数据基于2020年行政区划底图,按时间顺序依次制作了2013-2023年初的行政区划数据。截止2023年1月1日,我国共有34个省级单位,分别是4个直辖市、23个省、5个自治区和2个特别行政区。截止2023年1月1日,我国共有333个地级单位,分别是293个地级市、7个地区、30个自治州和3个盟,其中38个矢量要素未纳入统计(比如直辖市北京等、特别行政区澳门等、省直辖县定安县等)。截止2023年1月1日,我国共有2843个县级单位,分别是1301个县、394个县级市、977个市辖区、117个自治县、49个旗、3个自治旗、1个特区和1个林区,其中9个矢量要素未纳入县级类别统计范畴(比如特别行政区香港、无县级单位的地级市中山市东莞市等)。

CnOpenData 收录

Wind Turbine Data

该数据集包含风力涡轮机的运行数据,包括风速、风向、发电量等参数。数据记录了多个风力涡轮机在不同时间点的运行状态,适用于风能研究和风力发电系统的优化分析。

www.kaggle.com 收录

China Health and Nutrition Survey (CHNS)

China Health and Nutrition Survey(CHNS)是一项由美国北卡罗来纳大学人口中心与中国疾病预防控制中心营养与健康所合作开展的长期开放性队列研究项目,旨在评估国家和地方政府的健康、营养与家庭计划政策对人群健康和营养状况的影响,以及社会经济转型对居民健康行为和健康结果的作用。该调查覆盖中国15个省份和直辖市的约7200户家庭、超过30000名个体,采用多阶段随机抽样方法,收集了家庭、个体以及社区层面的详细数据,包括饮食、健康、经济和社会因素等信息。自2011年起,CHNS不断扩展,新增多个城市和省份,并持续完善纵向数据链接,为研究中国社会经济变化与健康营养的动态关系提供了重要的数据支持。

www.cpc.unc.edu 收录

猫狗图像数据集

该数据集包含猫和狗的图像,每类各12500张。训练集和测试集分别包含10000张和2500张图像,用于模型的训练和评估。

github 收录